G uchun yechish
G=\frac{-15N+16P_{A}-6P_{B}+Q_{1}-600}{15}
M uchun yechish (complex solution)
M\in \mathrm{C}
Q_{1}=15G+15N-16P_{A}+6P_{B}+600
M uchun yechish
M\in \mathrm{R}
Q_{1}=15G+15N-16P_{A}+6P_{B}+600
Baham ko'rish
Klipbordga nusxa olish
Q_{1}=600-4P_{A}-0\times 3M-12P_{A}+15G+6P_{B}+15N
0 hosil qilish uchun 0 va 0 ni ko'paytirish.
Q_{1}=600-4P_{A}-0M-12P_{A}+15G+6P_{B}+15N
0 hosil qilish uchun 0 va 3 ni ko'paytirish.
Q_{1}=600-4P_{A}-0-12P_{A}+15G+6P_{B}+15N
Har qanday sonni nolga ko‘paytirsangiz, nol chiqadi.
600-4P_{A}-0-12P_{A}+15G+6P_{B}+15N=Q_{1}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-12P_{A}+15G+6P_{B}+15N=Q_{1}-\left(600-4P_{A}-0\right)
Ikkala tarafdan 600-4P_{A}-0 ni ayirish.
15G+6P_{B}+15N=Q_{1}-\left(600-4P_{A}-0\right)+12P_{A}
12P_{A} ni ikki tarafga qo’shing.
15G+15N=Q_{1}-\left(600-4P_{A}-0\right)+12P_{A}-6P_{B}
Ikkala tarafdan 6P_{B} ni ayirish.
15G=Q_{1}-\left(600-4P_{A}-0\right)+12P_{A}-6P_{B}-15N
Ikkala tarafdan 15N ni ayirish.
15G=Q_{1}-\left(-4P_{A}+600\right)-15N-6P_{B}+12P_{A}
Shartlarni qayta saralash.
15G=Q_{1}+4P_{A}-600-15N-6P_{B}+12P_{A}
-4P_{A}+600 teskarisini topish uchun har birining teskarisini toping.
15G=Q_{1}+16P_{A}-600-15N-6P_{B}
16P_{A} ni olish uchun 4P_{A} va 12P_{A} ni birlashtirish.
15G=-15N+16P_{A}-6P_{B}+Q_{1}-600
Tenglama standart shaklda.
\frac{15G}{15}=\frac{-15N+16P_{A}-6P_{B}+Q_{1}-600}{15}
Ikki tarafini 15 ga bo‘ling.
G=\frac{-15N+16P_{A}-6P_{B}+Q_{1}-600}{15}
15 ga bo'lish 15 ga ko'paytirishni bekor qiladi.
G=\frac{Q_{1}}{15}+\frac{16P_{A}}{15}-\frac{2P_{B}}{5}-N-40
Q_{1}+16P_{A}-600-15N-6P_{B} ni 15 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}