P uchun yechish
P=12
P=0
Viktorina
Polynomial
P ^ { 2 } = 12 P
Baham ko'rish
Klipbordga nusxa olish
P^{2}-12P=0
Ikkala tarafdan 12P ni ayirish.
P\left(P-12\right)=0
P omili.
P=0 P=12
Tenglamani yechish uchun P=0 va P-12=0 ni yeching.
P^{2}-12P=0
Ikkala tarafdan 12P ni ayirish.
P=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -12 ni b va 0 ni c bilan almashtiring.
P=\frac{-\left(-12\right)±12}{2}
\left(-12\right)^{2} ning kvadrat ildizini chiqarish.
P=\frac{12±12}{2}
-12 ning teskarisi 12 ga teng.
P=\frac{24}{2}
P=\frac{12±12}{2} tenglamasini yeching, bunda ± musbat. 12 ni 12 ga qo'shish.
P=12
24 ni 2 ga bo'lish.
P=\frac{0}{2}
P=\frac{12±12}{2} tenglamasini yeching, bunda ± manfiy. 12 dan 12 ni ayirish.
P=0
0 ni 2 ga bo'lish.
P=12 P=0
Tenglama yechildi.
P^{2}-12P=0
Ikkala tarafdan 12P ni ayirish.
P^{2}-12P+\left(-6\right)^{2}=\left(-6\right)^{2}
-12 ni bo‘lish, x shartining koeffitsienti, 2 ga -6 olish uchun. Keyin, -6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
P^{2}-12P+36=36
-6 kvadratini chiqarish.
\left(P-6\right)^{2}=36
P^{2}-12P+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(P-6\right)^{2}}=\sqrt{36}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
P-6=6 P-6=-6
Qisqartirish.
P=12 P=0
6 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}