Asosiy tarkibga oʻtish
P uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

P^{2}-12P=0
Ikkala tarafdan 12P ni ayirish.
P\left(P-12\right)=0
P omili.
P=0 P=12
Tenglamani yechish uchun P=0 va P-12=0 ni yeching.
P^{2}-12P=0
Ikkala tarafdan 12P ni ayirish.
P=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -12 ni b va 0 ni c bilan almashtiring.
P=\frac{-\left(-12\right)±12}{2}
\left(-12\right)^{2} ning kvadrat ildizini chiqarish.
P=\frac{12±12}{2}
-12 ning teskarisi 12 ga teng.
P=\frac{24}{2}
P=\frac{12±12}{2} tenglamasini yeching, bunda ± musbat. 12 ni 12 ga qo'shish.
P=12
24 ni 2 ga bo'lish.
P=\frac{0}{2}
P=\frac{12±12}{2} tenglamasini yeching, bunda ± manfiy. 12 dan 12 ni ayirish.
P=0
0 ni 2 ga bo'lish.
P=12 P=0
Tenglama yechildi.
P^{2}-12P=0
Ikkala tarafdan 12P ni ayirish.
P^{2}-12P+\left(-6\right)^{2}=\left(-6\right)^{2}
-12 ni bo‘lish, x shartining koeffitsienti, 2 ga -6 olish uchun. Keyin, -6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
P^{2}-12P+36=36
-6 kvadratini chiqarish.
\left(P-6\right)^{2}=36
P^{2}-12P+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(P-6\right)^{2}}=\sqrt{36}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
P-6=6 P-6=-6
Qisqartirish.
P=12 P=0
6 ni tenglamaning ikkala tarafiga qo'shish.