Asosiy tarkibga oʻtish
C uchun yechish
Tick mark Image
P uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

PT=RT\left(1-\frac{C}{T}v^{3}\right)T
Tenglamaning ikkala tarafini T ga ko'paytirish.
PT=RT^{2}\left(1-\frac{C}{T}v^{3}\right)
T^{2} hosil qilish uchun T va T ni ko'paytirish.
PT=RT^{2}\left(1-\frac{Cv^{3}}{T}\right)
\frac{C}{T}v^{3} ni yagona kasrga aylantiring.
PT=RT^{2}\left(\frac{T}{T}-\frac{Cv^{3}}{T}\right)
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{T}{T} marotabaga ko'paytirish.
PT=RT^{2}\times \frac{T-Cv^{3}}{T}
\frac{T}{T} va \frac{Cv^{3}}{T} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
PT=\frac{R\left(T-Cv^{3}\right)}{T}T^{2}
R\times \frac{T-Cv^{3}}{T} ni yagona kasrga aylantiring.
PT=\frac{RT-RCv^{3}}{T}T^{2}
R ga T-Cv^{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
PT=\frac{\left(RT-RCv^{3}\right)T^{2}}{T}
\frac{RT-RCv^{3}}{T}T^{2} ni yagona kasrga aylantiring.
PT=T\left(-CRv^{3}+RT\right)
Surat va maxrajdagi ikkala T ni qisqartiring.
PT=-TCRv^{3}+RT^{2}
T ga -CRv^{3}+RT ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-TCRv^{3}+RT^{2}=PT
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-TCRv^{3}=PT-RT^{2}
Ikkala tarafdan RT^{2} ni ayirish.
-CRTv^{3}=PT-RT^{2}
Shartlarni qayta saralash.
\left(-RTv^{3}\right)C=PT-RT^{2}
Tenglama standart shaklda.
\frac{\left(-RTv^{3}\right)C}{-RTv^{3}}=\frac{T\left(P-RT\right)}{-RTv^{3}}
Ikki tarafini -RTv^{3} ga bo‘ling.
C=\frac{T\left(P-RT\right)}{-RTv^{3}}
-RTv^{3} ga bo'lish -RTv^{3} ga ko'paytirishni bekor qiladi.
C=-\frac{P-RT}{Rv^{3}}
T\left(P-RT\right) ni -RTv^{3} ga bo'lish.