C uchun yechish
\left\{\begin{matrix}C=\frac{RT-P}{Rv^{3}}\text{, }&R\neq 0\text{ and }v\neq 0\text{ and }T\neq 0\\C\in \mathrm{R}\text{, }&\left(P=0\text{ and }R=0\text{ and }T\neq 0\right)\text{ or }\left(P=RT\text{ and }v=0\text{ and }T\neq 0\text{ and }R\neq 0\right)\end{matrix}\right,
P uchun yechish
P=R\left(T-Cv^{3}\right)
T\neq 0
Baham ko'rish
Klipbordga nusxa olish
PT=RT\left(1-\frac{C}{T}v^{3}\right)T
Tenglamaning ikkala tarafini T ga ko'paytirish.
PT=RT^{2}\left(1-\frac{C}{T}v^{3}\right)
T^{2} hosil qilish uchun T va T ni ko'paytirish.
PT=RT^{2}\left(1-\frac{Cv^{3}}{T}\right)
\frac{C}{T}v^{3} ni yagona kasrga aylantiring.
PT=RT^{2}\left(\frac{T}{T}-\frac{Cv^{3}}{T}\right)
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{T}{T} marotabaga ko'paytirish.
PT=RT^{2}\times \frac{T-Cv^{3}}{T}
\frac{T}{T} va \frac{Cv^{3}}{T} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
PT=\frac{R\left(T-Cv^{3}\right)}{T}T^{2}
R\times \frac{T-Cv^{3}}{T} ni yagona kasrga aylantiring.
PT=\frac{RT-RCv^{3}}{T}T^{2}
R ga T-Cv^{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
PT=\frac{\left(RT-RCv^{3}\right)T^{2}}{T}
\frac{RT-RCv^{3}}{T}T^{2} ni yagona kasrga aylantiring.
PT=T\left(-CRv^{3}+RT\right)
Surat va maxrajdagi ikkala T ni qisqartiring.
PT=-TCRv^{3}+RT^{2}
T ga -CRv^{3}+RT ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-TCRv^{3}+RT^{2}=PT
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-TCRv^{3}=PT-RT^{2}
Ikkala tarafdan RT^{2} ni ayirish.
-CRTv^{3}=PT-RT^{2}
Shartlarni qayta saralash.
\left(-RTv^{3}\right)C=PT-RT^{2}
Tenglama standart shaklda.
\frac{\left(-RTv^{3}\right)C}{-RTv^{3}}=\frac{T\left(P-RT\right)}{-RTv^{3}}
Ikki tarafini -RTv^{3} ga bo‘ling.
C=\frac{T\left(P-RT\right)}{-RTv^{3}}
-RTv^{3} ga bo'lish -RTv^{3} ga ko'paytirishni bekor qiladi.
C=-\frac{P-RT}{Rv^{3}}
T\left(P-RT\right) ni -RTv^{3} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}