P uchun yechish
P\neq 0
x = \frac{\sqrt[3]{6 \sqrt{80229} + 1765} + \sqrt[3]{1765 - 6 \sqrt{80229}} + 7}{12} = 2,1802301552804595
x uchun yechish
x = \frac{\sqrt[3]{6 \sqrt{80229} + 1765} + \sqrt[3]{1765 - 6 \sqrt{80229}} + 7}{12} = 2,1802301552804595
P\neq 0
Grafik
Baham ko'rish
Klipbordga nusxa olish
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{2+x}{2-x}+\frac{4x^{2}}{x^{2}-4}-\frac{2-x}{2+x}\right)
P qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini P ga ko'paytirish.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{2+x}{2-x}+\frac{4x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
Faktor: x^{2}-4.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{\left(2+x\right)\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{4x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2-x va \left(x-2\right)\left(x+2\right) ning eng kichik umumiy karralisi \left(x-2\right)\left(x+2\right). \frac{2+x}{2-x} ni \frac{-\left(x+2\right)}{-\left(x+2\right)} marotabaga ko'paytirish.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{\left(2+x\right)\left(-1\right)\left(x+2\right)+4x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
\frac{\left(2+x\right)\left(-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} va \frac{4x^{2}}{\left(x-2\right)\left(x+2\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{-2x-4-x^{2}-2x+4x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
\left(2+x\right)\left(-1\right)\left(x+2\right)+4x^{2} ichidagi ko‘paytirishlarni bajaring.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{-4x-4+3x^{2}}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
-2x-4-x^{2}-2x+4x^{2} kabi iboralarga o‘xshab birlashtiring.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{\left(x-2\right)\left(3x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2-x}{2+x}\right)
\frac{-4x-4+3x^{2}}{\left(x-2\right)\left(x+2\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\left(\frac{3x+2}{x+2}-\frac{2-x}{2+x}\right)
Surat va maxrajdagi ikkala x-2 ni qisqartiring.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\times \frac{3x+2-\left(2-x\right)}{x+2}
\frac{3x+2}{x+2} va \frac{2-x}{2+x} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\times \frac{3x+2-2+x}{x+2}
3x+2-\left(2-x\right) ichidagi ko‘paytirishlarni bajaring.
P=Px\left(-3+x\right)^{-1}\left(2-x\right)\times \frac{4x}{x+2}
3x+2-2+x kabi iboralarga o‘xshab birlashtiring.
P=\frac{P\times 4x}{x+2}x\left(-3+x\right)^{-1}\left(2-x\right)
P\times \frac{4x}{x+2} ni yagona kasrga aylantiring.
P=2\times \frac{P\times 4x}{x+2}x\left(-3+x\right)^{-1}-\frac{4Px}{x+2}\left(-3+x\right)^{-1}x^{2}
\frac{P\times 4x}{x+2}x\left(-3+x\right)^{-1} ga 2-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
P=\frac{2P\times 4x}{x+2}x\left(-3+x\right)^{-1}-\frac{4Px}{x+2}\left(-3+x\right)^{-1}x^{2}
2\times \frac{P\times 4x}{x+2} ni yagona kasrga aylantiring.
P=\frac{2P\times 4xx}{x+2}\left(-3+x\right)^{-1}-\frac{4Px}{x+2}\left(-3+x\right)^{-1}x^{2}
\frac{2P\times 4x}{x+2}x ni yagona kasrga aylantiring.
P=\frac{2P\times 4xx\left(-3+x\right)^{-1}}{x+2}-\frac{4Px}{x+2}\left(-3+x\right)^{-1}x^{2}
\frac{2P\times 4xx}{x+2}\left(-3+x\right)^{-1} ni yagona kasrga aylantiring.
P=\frac{2P\times 4xx\left(-3+x\right)^{-1}}{x+2}-\frac{4Px\left(-3+x\right)^{-1}}{x+2}x^{2}
\frac{4Px}{x+2}\left(-3+x\right)^{-1} ni yagona kasrga aylantiring.
P=\frac{2P\times 4xx\left(-3+x\right)^{-1}}{x+2}-\frac{4Px\left(-3+x\right)^{-1}x^{2}}{x+2}
\frac{4Px\left(-3+x\right)^{-1}}{x+2}x^{2} ni yagona kasrga aylantiring.
P=\frac{2P\times 4xx\left(-3+x\right)^{-1}-4Px\left(-3+x\right)^{-1}x^{2}}{x+2}
\frac{2P\times 4xx\left(-3+x\right)^{-1}}{x+2} va \frac{4Px\left(-3+x\right)^{-1}x^{2}}{x+2} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
P=\frac{2P\times 4x^{2}\left(-3+x\right)^{-1}-4Px\left(-3+x\right)^{-1}x^{2}}{x+2}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
P=\frac{2P\times 4x^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}}{x+2}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 1 va 2 ni qo‘shib, 3 ni oling.
P=\frac{8Px^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}}{x+2}
8 hosil qilish uchun 2 va 4 ni ko'paytirish.
P-\frac{8Px^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}}{x+2}=0
Ikkala tarafdan \frac{8Px^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}}{x+2} ni ayirish.
\left(x+2\right)P-\left(8Px^{2}\left(-3+x\right)^{-1}-4Px^{3}\left(-3+x\right)^{-1}\right)=0
Tenglamaning ikkala tarafini x+2 ga ko'paytirish.
-\left(-4\times \frac{1}{x-3}Px^{3}+8\times \frac{1}{x-3}Px^{2}\right)+P\left(x+2\right)=0
Shartlarni qayta saralash.
-\left(-4\times \frac{1}{x-3}Px^{3}+8\times \frac{1}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
Tenglamaning ikkala tarafini x-3 ga ko'paytirish.
-\left(\frac{-4}{x-3}Px^{3}+8\times \frac{1}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
-4\times \frac{1}{x-3} ni yagona kasrga aylantiring.
-\left(\frac{-4P}{x-3}x^{3}+8\times \frac{1}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
\frac{-4}{x-3}P ni yagona kasrga aylantiring.
-\left(\frac{-4Px^{3}}{x-3}+8\times \frac{1}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
\frac{-4P}{x-3}x^{3} ni yagona kasrga aylantiring.
-\left(\frac{-4Px^{3}}{x-3}+\frac{8}{x-3}Px^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
8\times \frac{1}{x-3} ni yagona kasrga aylantiring.
-\left(\frac{-4Px^{3}}{x-3}+\frac{8P}{x-3}x^{2}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
\frac{8}{x-3}P ni yagona kasrga aylantiring.
-\left(\frac{-4Px^{3}}{x-3}+\frac{8Px^{2}}{x-3}\right)\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
\frac{8P}{x-3}x^{2} ni yagona kasrga aylantiring.
-\frac{-4Px^{3}+8Px^{2}}{x-3}\left(x-3\right)+P\left(x+2\right)\left(x-3\right)=0
\frac{-4Px^{3}}{x-3} va \frac{8Px^{2}}{x-3} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
-\frac{\left(-4Px^{3}+8Px^{2}\right)\left(x-3\right)}{x-3}+P\left(x+2\right)\left(x-3\right)=0
\frac{-4Px^{3}+8Px^{2}}{x-3}\left(x-3\right) ni yagona kasrga aylantiring.
-\left(-4Px^{3}+8Px^{2}\right)+P\left(x+2\right)\left(x-3\right)=0
Surat va maxrajdagi ikkala x-3 ni qisqartiring.
4Px^{3}-8Px^{2}+P\left(x+2\right)\left(x-3\right)=0
-4Px^{3}+8Px^{2} teskarisini topish uchun har birining teskarisini toping.
4Px^{3}-8Px^{2}+\left(Px+2P\right)\left(x-3\right)=0
P ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4Px^{3}-8Px^{2}+Px^{2}-Px-6P=0
Px+2P ga x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
4Px^{3}-7Px^{2}-Px-6P=0
-7Px^{2} ni olish uchun -8Px^{2} va Px^{2} ni birlashtirish.
\left(4x^{3}-7x^{2}-x-6\right)P=0
P'ga ega bo'lgan barcha shartlarni birlashtirish.
P=0
0 ni -x-7x^{2}-6+4x^{3} ga bo'lish.
P\in \emptyset
P qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}