α uchun yechish
\alpha =\frac{360}{N+1}
N\neq -1
N uchun yechish
N=-1+\frac{360}{\alpha }
\alpha \neq 0
Baham ko'rish
Klipbordga nusxa olish
N\alpha =360+\alpha \left(-1\right)
\alpha qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \alpha ga ko'paytirish.
N\alpha -\alpha \left(-1\right)=360
Ikkala tarafdan \alpha \left(-1\right) ni ayirish.
N\alpha +\alpha =360
1 hosil qilish uchun -1 va -1 ni ko'paytirish.
\left(N+1\right)\alpha =360
\alpha 'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(N+1\right)\alpha }{N+1}=\frac{360}{N+1}
Ikki tarafini N+1 ga bo‘ling.
\alpha =\frac{360}{N+1}
N+1 ga bo'lish N+1 ga ko'paytirishni bekor qiladi.
\alpha =\frac{360}{N+1}\text{, }\alpha \neq 0
\alpha qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}