Asosiy tarkibga oʻtish
g uchun yechish
Tick mark Image
I uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

I=mg\sqrt{1+\frac{1^{2}}{n^{2}}}
\frac{1}{n}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
I=mg\sqrt{\frac{n^{2}}{n^{2}}+\frac{1^{2}}{n^{2}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{n^{2}}{n^{2}} marotabaga ko'paytirish.
I=mg\sqrt{\frac{n^{2}+1^{2}}{n^{2}}}
\frac{n^{2}}{n^{2}} va \frac{1^{2}}{n^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
I=mg\sqrt{\frac{n^{2}+1}{n^{2}}}
n^{2}+1^{2} kabi iboralarga o‘xshab birlashtiring.
mg\sqrt{\frac{n^{2}+1}{n^{2}}}=I
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\sqrt{\frac{n^{2}+1}{n^{2}}}mg=I
Tenglama standart shaklda.
\frac{\sqrt{\frac{n^{2}+1}{n^{2}}}mg}{\sqrt{\frac{n^{2}+1}{n^{2}}}m}=\frac{I}{\sqrt{\frac{n^{2}+1}{n^{2}}}m}
Ikki tarafini m\sqrt{\left(n^{2}+1\right)n^{-2}} ga bo‘ling.
g=\frac{I}{\sqrt{\frac{n^{2}+1}{n^{2}}}m}
m\sqrt{\left(n^{2}+1\right)n^{-2}} ga bo'lish m\sqrt{\left(n^{2}+1\right)n^{-2}} ga ko'paytirishni bekor qiladi.
g=\frac{I|n|}{m\sqrt{n^{2}+1}}
I ni m\sqrt{\left(n^{2}+1\right)n^{-2}} ga bo'lish.