g uchun yechish
\left\{\begin{matrix}g=\frac{I|n|}{m\sqrt{n^{2}+1}}\text{, }&m\neq 0\text{ and }n\neq 0\\g\in \mathrm{R}\text{, }&I=0\text{ and }m=0\text{ and }n\neq 0\end{matrix}\right,
I uchun yechish
I=\frac{gm\sqrt{n^{2}+1}}{|n|}
n\neq 0
Baham ko'rish
Klipbordga nusxa olish
I=mg\sqrt{1+\frac{1^{2}}{n^{2}}}
\frac{1}{n}ni darajaga oshirish uchun, surat va maxrajni darajaga oshirib, keyin bo‘ling.
I=mg\sqrt{\frac{n^{2}}{n^{2}}+\frac{1^{2}}{n^{2}}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{n^{2}}{n^{2}} marotabaga ko'paytirish.
I=mg\sqrt{\frac{n^{2}+1^{2}}{n^{2}}}
\frac{n^{2}}{n^{2}} va \frac{1^{2}}{n^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
I=mg\sqrt{\frac{n^{2}+1}{n^{2}}}
n^{2}+1^{2} kabi iboralarga o‘xshab birlashtiring.
mg\sqrt{\frac{n^{2}+1}{n^{2}}}=I
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\sqrt{\frac{n^{2}+1}{n^{2}}}mg=I
Tenglama standart shaklda.
\frac{\sqrt{\frac{n^{2}+1}{n^{2}}}mg}{\sqrt{\frac{n^{2}+1}{n^{2}}}m}=\frac{I}{\sqrt{\frac{n^{2}+1}{n^{2}}}m}
Ikki tarafini m\sqrt{\left(n^{2}+1\right)n^{-2}} ga bo‘ling.
g=\frac{I}{\sqrt{\frac{n^{2}+1}{n^{2}}}m}
m\sqrt{\left(n^{2}+1\right)n^{-2}} ga bo'lish m\sqrt{\left(n^{2}+1\right)n^{-2}} ga ko'paytirishni bekor qiladi.
g=\frac{I|n|}{m\sqrt{n^{2}+1}}
I ni m\sqrt{\left(n^{2}+1\right)n^{-2}} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}