Asosiy tarkibga oʻtish
H uchun yechish
Tick mark Image
M uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

H=\left(\frac{14}{3}+\frac{2}{3}M\right)d
\frac{2}{3} ga 7+M ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
H=\frac{14}{3}d+\frac{2}{3}Md
\frac{14}{3}+\frac{2}{3}M ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
H=\left(\frac{14}{3}+\frac{2}{3}M\right)d
\frac{2}{3} ga 7+M ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
H=\frac{14}{3}d+\frac{2}{3}Md
\frac{14}{3}+\frac{2}{3}M ga d ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{14}{3}d+\frac{2}{3}Md=H
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{2}{3}Md=H-\frac{14}{3}d
Ikkala tarafdan \frac{14}{3}d ni ayirish.
\frac{2d}{3}M=-\frac{14d}{3}+H
Tenglama standart shaklda.
\frac{3\times \frac{2d}{3}M}{2d}=\frac{3\left(-\frac{14d}{3}+H\right)}{2d}
Ikki tarafini \frac{2}{3}d ga bo‘ling.
M=\frac{3\left(-\frac{14d}{3}+H\right)}{2d}
\frac{2}{3}d ga bo'lish \frac{2}{3}d ga ko'paytirishni bekor qiladi.
M=\frac{3H}{2d}-7
H-\frac{14d}{3} ni \frac{2}{3}d ga bo'lish.