Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-4x+1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2}}{2\times 2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2}}{2\times 2}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16-8}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{8}}{2\times 2}
16 ni -8 ga qo'shish.
x=\frac{-\left(-4\right)±2\sqrt{2}}{2\times 2}
8 ning kvadrat ildizini chiqarish.
x=\frac{4±2\sqrt{2}}{2\times 2}
-4 ning teskarisi 4 ga teng.
x=\frac{4±2\sqrt{2}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2\sqrt{2}+4}{4}
x=\frac{4±2\sqrt{2}}{4} tenglamasini yeching, bunda ± musbat. 4 ni 2\sqrt{2} ga qo'shish.
x=\frac{\sqrt{2}}{2}+1
4+2\sqrt{2} ni 4 ga bo'lish.
x=\frac{4-2\sqrt{2}}{4}
x=\frac{4±2\sqrt{2}}{4} tenglamasini yeching, bunda ± manfiy. 4 dan 2\sqrt{2} ni ayirish.
x=-\frac{\sqrt{2}}{2}+1
4-2\sqrt{2} ni 4 ga bo'lish.
2x^{2}-4x+1=2\left(x-\left(\frac{\sqrt{2}}{2}+1\right)\right)\left(x-\left(-\frac{\sqrt{2}}{2}+1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 1+\frac{\sqrt{2}}{2} ga va x_{2} uchun 1-\frac{\sqrt{2}}{2} ga bo‘ling.