g uchun yechish (complex solution)
\left\{\begin{matrix}g=\frac{Fr^{2}}{m_{1}m_{2}}\text{, }&m_{2}\neq 0\text{ and }m_{1}\neq 0\text{ and }r\neq 0\\g\in \mathrm{C}\text{, }&\left(m_{2}=0\text{ or }m_{1}=0\right)\text{ and }F=0\text{ and }r\neq 0\end{matrix}\right,
g uchun yechish
\left\{\begin{matrix}g=\frac{Fr^{2}}{m_{1}m_{2}}\text{, }&m_{2}\neq 0\text{ and }m_{1}\neq 0\text{ and }r\neq 0\\g\in \mathrm{R}\text{, }&\left(m_{2}=0\text{ or }m_{1}=0\right)\text{ and }F=0\text{ and }r\neq 0\end{matrix}\right,
F uchun yechish
F=\frac{gm_{1}m_{2}}{r^{2}}
r\neq 0
Baham ko'rish
Klipbordga nusxa olish
Fr^{2}=gm_{1}m_{2}
Tenglamaning ikkala tarafini r^{2} ga ko'paytirish.
gm_{1}m_{2}=Fr^{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
m_{1}m_{2}g=Fr^{2}
Tenglama standart shaklda.
\frac{m_{1}m_{2}g}{m_{1}m_{2}}=\frac{Fr^{2}}{m_{1}m_{2}}
Ikki tarafini m_{1}m_{2} ga bo‘ling.
g=\frac{Fr^{2}}{m_{1}m_{2}}
m_{1}m_{2} ga bo'lish m_{1}m_{2} ga ko'paytirishni bekor qiladi.
Fr^{2}=gm_{1}m_{2}
Tenglamaning ikkala tarafini r^{2} ga ko'paytirish.
gm_{1}m_{2}=Fr^{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
m_{1}m_{2}g=Fr^{2}
Tenglama standart shaklda.
\frac{m_{1}m_{2}g}{m_{1}m_{2}}=\frac{Fr^{2}}{m_{1}m_{2}}
Ikki tarafini m_{1}m_{2} ga bo‘ling.
g=\frac{Fr^{2}}{m_{1}m_{2}}
m_{1}m_{2} ga bo'lish m_{1}m_{2} ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}