E d P = \frac { 750 - 1000 } { 1000 } \times \frac { 100 } { 125 - 100 }
E uchun yechish
E=-\frac{1}{Pd}
P\neq 0\text{ and }d\neq 0
P uchun yechish
P=-\frac{1}{Ed}
d\neq 0\text{ and }E\neq 0
Baham ko'rish
Klipbordga nusxa olish
EdP=\frac{-250}{1000}\times \left(\frac{100}{125-100}\right)
-250 olish uchun 750 dan 1000 ni ayirish.
EdP=\left(-\frac{1}{4}\right)\times \left(\frac{100}{125-100}\right)
\frac{-250}{1000} ulushini 250 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
EdP=\left(-\frac{1}{4}\right)\times \left(\frac{100}{25}\right)
25 olish uchun 125 dan 100 ni ayirish.
EdP=\left(-\frac{1}{4}\right)\times 4
4 ni olish uchun 100 ni 25 ga bo‘ling.
PdE=-1
Tenglama standart shaklda.
\frac{PdE}{Pd}=-\frac{1}{Pd}
Ikki tarafini dP ga bo‘ling.
E=-\frac{1}{Pd}
dP ga bo'lish dP ga ko'paytirishni bekor qiladi.
EdP=\frac{-250}{1000}\times \left(\frac{100}{125-100}\right)
-250 olish uchun 750 dan 1000 ni ayirish.
EdP=\left(-\frac{1}{4}\right)\times \left(\frac{100}{125-100}\right)
\frac{-250}{1000} ulushini 250 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
EdP=\left(-\frac{1}{4}\right)\times \left(\frac{100}{25}\right)
25 olish uchun 125 dan 100 ni ayirish.
EdP=\left(-\frac{1}{4}\right)\times 4
4 ni olish uchun 100 ni 25 ga bo‘ling.
EdP=-1
Tenglama standart shaklda.
\frac{EdP}{Ed}=-\frac{1}{Ed}
Ikki tarafini Ed ga bo‘ling.
P=-\frac{1}{Ed}
Ed ga bo'lish Ed ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}