E uchun yechish
E=-\frac{42}{25d}
d\neq 0
d uchun yechish
d=-\frac{42}{25E}
E\neq 0
Viktorina
Linear Equation
5xshash muammolar:
E d = \frac { 28 } { 10 } \times \frac { 7 - 10 } { 33 - 28 }
Baham ko'rish
Klipbordga nusxa olish
Ed=\frac{14}{5}\times \frac{7-10}{33-28}
\frac{28}{10} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Ed=\frac{14}{5}\times \frac{-3}{33-28}
-3 olish uchun 7 dan 10 ni ayirish.
Ed=\frac{14}{5}\times \frac{-3}{5}
5 olish uchun 33 dan 28 ni ayirish.
Ed=\frac{14}{5}\left(-\frac{3}{5}\right)
\frac{-3}{5} kasri manfiy belgini olib tashlash bilan -\frac{3}{5} sifatida qayta yozilishi mumkin.
Ed=-\frac{42}{25}
-\frac{42}{25} hosil qilish uchun \frac{14}{5} va -\frac{3}{5} ni ko'paytirish.
dE=-\frac{42}{25}
Tenglama standart shaklda.
\frac{dE}{d}=-\frac{\frac{42}{25}}{d}
Ikki tarafini d ga bo‘ling.
E=-\frac{\frac{42}{25}}{d}
d ga bo'lish d ga ko'paytirishni bekor qiladi.
E=-\frac{42}{25d}
-\frac{42}{25} ni d ga bo'lish.
Ed=\frac{14}{5}\times \frac{7-10}{33-28}
\frac{28}{10} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Ed=\frac{14}{5}\times \frac{-3}{33-28}
-3 olish uchun 7 dan 10 ni ayirish.
Ed=\frac{14}{5}\times \frac{-3}{5}
5 olish uchun 33 dan 28 ni ayirish.
Ed=\frac{14}{5}\left(-\frac{3}{5}\right)
\frac{-3}{5} kasri manfiy belgini olib tashlash bilan -\frac{3}{5} sifatida qayta yozilishi mumkin.
Ed=-\frac{42}{25}
-\frac{42}{25} hosil qilish uchun \frac{14}{5} va -\frac{3}{5} ni ko'paytirish.
\frac{Ed}{E}=-\frac{\frac{42}{25}}{E}
Ikki tarafini E ga bo‘ling.
d=-\frac{\frac{42}{25}}{E}
E ga bo'lish E ga ko'paytirishni bekor qiladi.
d=-\frac{42}{25E}
-\frac{42}{25} ni E ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}