Asosiy tarkibga oʻtish
E uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

EE+E\left(-1317\right)=683
E qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini E ga ko'paytirish.
E^{2}+E\left(-1317\right)=683
E^{2} hosil qilish uchun E va E ni ko'paytirish.
E^{2}+E\left(-1317\right)-683=0
Ikkala tarafdan 683 ni ayirish.
E^{2}-1317E-683=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
E=\frac{-\left(-1317\right)±\sqrt{\left(-1317\right)^{2}-4\left(-683\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -1317 ni b va -683 ni c bilan almashtiring.
E=\frac{-\left(-1317\right)±\sqrt{1734489-4\left(-683\right)}}{2}
-1317 kvadratini chiqarish.
E=\frac{-\left(-1317\right)±\sqrt{1734489+2732}}{2}
-4 ni -683 marotabaga ko'paytirish.
E=\frac{-\left(-1317\right)±\sqrt{1737221}}{2}
1734489 ni 2732 ga qo'shish.
E=\frac{1317±\sqrt{1737221}}{2}
-1317 ning teskarisi 1317 ga teng.
E=\frac{\sqrt{1737221}+1317}{2}
E=\frac{1317±\sqrt{1737221}}{2} tenglamasini yeching, bunda ± musbat. 1317 ni \sqrt{1737221} ga qo'shish.
E=\frac{1317-\sqrt{1737221}}{2}
E=\frac{1317±\sqrt{1737221}}{2} tenglamasini yeching, bunda ± manfiy. 1317 dan \sqrt{1737221} ni ayirish.
E=\frac{\sqrt{1737221}+1317}{2} E=\frac{1317-\sqrt{1737221}}{2}
Tenglama yechildi.
EE+E\left(-1317\right)=683
E qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini E ga ko'paytirish.
E^{2}+E\left(-1317\right)=683
E^{2} hosil qilish uchun E va E ni ko'paytirish.
E^{2}-1317E=683
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
E^{2}-1317E+\left(-\frac{1317}{2}\right)^{2}=683+\left(-\frac{1317}{2}\right)^{2}
-1317 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1317}{2} olish uchun. Keyin, -\frac{1317}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
E^{2}-1317E+\frac{1734489}{4}=683+\frac{1734489}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1317}{2} kvadratini chiqarish.
E^{2}-1317E+\frac{1734489}{4}=\frac{1737221}{4}
683 ni \frac{1734489}{4} ga qo'shish.
\left(E-\frac{1317}{2}\right)^{2}=\frac{1737221}{4}
E^{2}-1317E+\frac{1734489}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(E-\frac{1317}{2}\right)^{2}}=\sqrt{\frac{1737221}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
E-\frac{1317}{2}=\frac{\sqrt{1737221}}{2} E-\frac{1317}{2}=-\frac{\sqrt{1737221}}{2}
Qisqartirish.
E=\frac{\sqrt{1737221}+1317}{2} E=\frac{1317-\sqrt{1737221}}{2}
\frac{1317}{2} ni tenglamaning ikkala tarafiga qo'shish.