E uchun yechish
E = \frac{\sqrt{1737221} + 1317}{2} \approx 1317,518398833
E=\frac{1317-\sqrt{1737221}}{2}\approx -0,518398833
Baham ko'rish
Klipbordga nusxa olish
EE+E\left(-1317\right)=683
E qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini E ga ko'paytirish.
E^{2}+E\left(-1317\right)=683
E^{2} hosil qilish uchun E va E ni ko'paytirish.
E^{2}+E\left(-1317\right)-683=0
Ikkala tarafdan 683 ni ayirish.
E^{2}-1317E-683=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
E=\frac{-\left(-1317\right)±\sqrt{\left(-1317\right)^{2}-4\left(-683\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -1317 ni b va -683 ni c bilan almashtiring.
E=\frac{-\left(-1317\right)±\sqrt{1734489-4\left(-683\right)}}{2}
-1317 kvadratini chiqarish.
E=\frac{-\left(-1317\right)±\sqrt{1734489+2732}}{2}
-4 ni -683 marotabaga ko'paytirish.
E=\frac{-\left(-1317\right)±\sqrt{1737221}}{2}
1734489 ni 2732 ga qo'shish.
E=\frac{1317±\sqrt{1737221}}{2}
-1317 ning teskarisi 1317 ga teng.
E=\frac{\sqrt{1737221}+1317}{2}
E=\frac{1317±\sqrt{1737221}}{2} tenglamasini yeching, bunda ± musbat. 1317 ni \sqrt{1737221} ga qo'shish.
E=\frac{1317-\sqrt{1737221}}{2}
E=\frac{1317±\sqrt{1737221}}{2} tenglamasini yeching, bunda ± manfiy. 1317 dan \sqrt{1737221} ni ayirish.
E=\frac{\sqrt{1737221}+1317}{2} E=\frac{1317-\sqrt{1737221}}{2}
Tenglama yechildi.
EE+E\left(-1317\right)=683
E qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini E ga ko'paytirish.
E^{2}+E\left(-1317\right)=683
E^{2} hosil qilish uchun E va E ni ko'paytirish.
E^{2}-1317E=683
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
E^{2}-1317E+\left(-\frac{1317}{2}\right)^{2}=683+\left(-\frac{1317}{2}\right)^{2}
-1317 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1317}{2} olish uchun. Keyin, -\frac{1317}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
E^{2}-1317E+\frac{1734489}{4}=683+\frac{1734489}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1317}{2} kvadratini chiqarish.
E^{2}-1317E+\frac{1734489}{4}=\frac{1737221}{4}
683 ni \frac{1734489}{4} ga qo'shish.
\left(E-\frac{1317}{2}\right)^{2}=\frac{1737221}{4}
E^{2}-1317E+\frac{1734489}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(E-\frac{1317}{2}\right)^{2}}=\sqrt{\frac{1737221}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
E-\frac{1317}{2}=\frac{\sqrt{1737221}}{2} E-\frac{1317}{2}=-\frac{\sqrt{1737221}}{2}
Qisqartirish.
E=\frac{\sqrt{1737221}+1317}{2} E=\frac{1317-\sqrt{1737221}}{2}
\frac{1317}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}