C uchun yechish
C=\frac{28}{n_{1}+n_{2}}
n_{1}\neq -n_{2}
n_1 uchun yechish
n_{1}=-n_{2}+\frac{28}{C}
C\neq 0
Baham ko'rish
Klipbordga nusxa olish
\left(n_{1}+n_{2}\right)C=28
C'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(n_{1}+n_{2}\right)C}{n_{1}+n_{2}}=\frac{28}{n_{1}+n_{2}}
Ikki tarafini n_{1}+n_{2} ga bo‘ling.
C=\frac{28}{n_{1}+n_{2}}
n_{1}+n_{2} ga bo'lish n_{1}+n_{2} ga ko'paytirishni bekor qiladi.
Cn_{1}=28-Cn_{2}
Ikkala tarafdan Cn_{2} ni ayirish.
\frac{Cn_{1}}{C}=\frac{28-Cn_{2}}{C}
Ikki tarafini C ga bo‘ling.
n_{1}=\frac{28-Cn_{2}}{C}
C ga bo'lish C ga ko'paytirishni bekor qiladi.
n_{1}=-n_{2}+\frac{28}{C}
28-Cn_{2} ni C ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}