C uchun yechish (complex solution)
\left\{\begin{matrix}C=-\frac{9-x^{2}}{hx\left(x-9\right)}\text{, }&x\neq 9\text{ and }x\neq 0\text{ and }h\neq 0\\C\in \mathrm{C}\text{, }&\left(x=-3\text{ or }x=3\right)\text{ and }h=0\end{matrix}\right,
h uchun yechish (complex solution)
\left\{\begin{matrix}h=-\frac{9-x^{2}}{Cx\left(x-9\right)}\text{, }&x\neq 9\text{ and }x\neq 0\text{ and }C\neq 0\\h\in \mathrm{C}\text{, }&\left(x=-3\text{ or }x=3\right)\text{ and }C=0\end{matrix}\right,
C uchun yechish
\left\{\begin{matrix}C=-\frac{9-x^{2}}{hx\left(x-9\right)}\text{, }&x\neq 9\text{ and }x\neq 0\text{ and }h\neq 0\\C\in \mathrm{R}\text{, }&h=0\text{ and }|x|=3\end{matrix}\right,
h uchun yechish
\left\{\begin{matrix}h=-\frac{9-x^{2}}{Cx\left(x-9\right)}\text{, }&x\neq 9\text{ and }x\neq 0\text{ and }C\neq 0\\h\in \mathrm{R}\text{, }&C=0\text{ and }|x|=3\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
Chx\left(x-9\right)=x^{2}-9
Tenglamaning ikkala tarafini x-9 ga ko'paytirish.
Chx^{2}-9Chx=x^{2}-9
Chx ga x-9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(hx^{2}-9hx\right)C=x^{2}-9
C'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(hx^{2}-9hx\right)C}{hx^{2}-9hx}=\frac{x^{2}-9}{hx^{2}-9hx}
Ikki tarafini hx^{2}-9hx ga bo‘ling.
C=\frac{x^{2}-9}{hx^{2}-9hx}
hx^{2}-9hx ga bo'lish hx^{2}-9hx ga ko'paytirishni bekor qiladi.
C=\frac{x^{2}-9}{hx\left(x-9\right)}
-9+x^{2} ni hx^{2}-9hx ga bo'lish.
Chx\left(x-9\right)=x^{2}-9
Tenglamaning ikkala tarafini x-9 ga ko'paytirish.
Chx^{2}-9Chx=x^{2}-9
Chx ga x-9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(Cx^{2}-9Cx\right)h=x^{2}-9
h'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(Cx^{2}-9Cx\right)h}{Cx^{2}-9Cx}=\frac{x^{2}-9}{Cx^{2}-9Cx}
Ikki tarafini -9xC+Cx^{2} ga bo‘ling.
h=\frac{x^{2}-9}{Cx^{2}-9Cx}
-9xC+Cx^{2} ga bo'lish -9xC+Cx^{2} ga ko'paytirishni bekor qiladi.
h=\frac{x^{2}-9}{Cx\left(x-9\right)}
-9+x^{2} ni -9xC+Cx^{2} ga bo'lish.
Chx\left(x-9\right)=x^{2}-9
Tenglamaning ikkala tarafini x-9 ga ko'paytirish.
Chx^{2}-9Chx=x^{2}-9
Chx ga x-9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(hx^{2}-9hx\right)C=x^{2}-9
C'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(hx^{2}-9hx\right)C}{hx^{2}-9hx}=\frac{x^{2}-9}{hx^{2}-9hx}
Ikki tarafini hx^{2}-9hx ga bo‘ling.
C=\frac{x^{2}-9}{hx^{2}-9hx}
hx^{2}-9hx ga bo'lish hx^{2}-9hx ga ko'paytirishni bekor qiladi.
C=\frac{x^{2}-9}{hx\left(x-9\right)}
-9+x^{2} ni hx^{2}-9hx ga bo'lish.
Chx\left(x-9\right)=x^{2}-9
Tenglamaning ikkala tarafini x-9 ga ko'paytirish.
Chx^{2}-9Chx=x^{2}-9
Chx ga x-9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(Cx^{2}-9Cx\right)h=x^{2}-9
h'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(Cx^{2}-9Cx\right)h}{Cx^{2}-9Cx}=\frac{x^{2}-9}{Cx^{2}-9Cx}
Ikki tarafini -9xC+Cx^{2} ga bo‘ling.
h=\frac{x^{2}-9}{Cx^{2}-9Cx}
-9xC+Cx^{2} ga bo'lish -9xC+Cx^{2} ga ko'paytirishni bekor qiladi.
h=\frac{x^{2}-9}{Cx\left(x-9\right)}
-9+x^{2} ni -9xC+Cx^{2} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}