C uchun yechish
C=\frac{170408819104184715837886196294401\sqrt{17}}{1700000000000000000000000000000000}\approx 0,413302095
C'ni tayinlash
C≔\frac{170408819104184715837886196294401\sqrt{17}}{1700000000000000000000000000000000}
Baham ko'rish
Klipbordga nusxa olish
C = \frac{1 + 0,8390996311772799 ^ {2}}{\sqrt{{(4 ^ {2} + 1)}}}
Evaluate trigonometric functions in the problem
C=\frac{1+0,70408819104184715837886196294401}{\sqrt{4^{2}+1}}
2 daraja ko‘rsatkichini 0,8390996311772799 ga hisoblang va 0,70408819104184715837886196294401 ni qiymatni oling.
C=\frac{1,70408819104184715837886196294401}{\sqrt{4^{2}+1}}
1,70408819104184715837886196294401 olish uchun 1 va 0,70408819104184715837886196294401'ni qo'shing.
C=\frac{1,70408819104184715837886196294401}{\sqrt{16+1}}
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
C=\frac{1,70408819104184715837886196294401}{\sqrt{17}}
17 olish uchun 16 va 1'ni qo'shing.
C=\frac{1,70408819104184715837886196294401\sqrt{17}}{\left(\sqrt{17}\right)^{2}}
\frac{1,70408819104184715837886196294401}{\sqrt{17}} maxrajini \sqrt{17} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
C=\frac{1,70408819104184715837886196294401\sqrt{17}}{17}
\sqrt{17} kvadrati – 17.
C=\frac{170408819104184715837886196294401}{1700000000000000000000000000000000}\sqrt{17}
\frac{170408819104184715837886196294401}{1700000000000000000000000000000000}\sqrt{17} ni olish uchun 1,70408819104184715837886196294401\sqrt{17} ni 17 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}