A uchun yechish (complex solution)
A=-\frac{3}{B^{2}-57}
B\neq -\sqrt{57}\text{ and }B\neq \sqrt{57}
A uchun yechish
A=-\frac{3}{B^{2}-57}
|B|\neq \sqrt{57}
B uchun yechish (complex solution)
B=-\sqrt{57-\frac{3}{A}}
B=\sqrt{57-\frac{3}{A}}\text{, }A\neq 0
B uchun yechish
B=\sqrt{57-\frac{3}{A}}
B=-\sqrt{57-\frac{3}{A}}\text{, }A\geq \frac{1}{19}\text{ or }A<0
Baham ko'rish
Klipbordga nusxa olish
B^{2}A+3=57A
B^{2} hosil qilish uchun B va B ni ko'paytirish.
B^{2}A+3-57A=0
Ikkala tarafdan 57A ni ayirish.
B^{2}A-57A=-3
Ikkala tarafdan 3 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\left(B^{2}-57\right)A=-3
A'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(B^{2}-57\right)A}{B^{2}-57}=-\frac{3}{B^{2}-57}
Ikki tarafini B^{2}-57 ga bo‘ling.
A=-\frac{3}{B^{2}-57}
B^{2}-57 ga bo'lish B^{2}-57 ga ko'paytirishni bekor qiladi.
B^{2}A+3=57A
B^{2} hosil qilish uchun B va B ni ko'paytirish.
B^{2}A+3-57A=0
Ikkala tarafdan 57A ni ayirish.
B^{2}A-57A=-3
Ikkala tarafdan 3 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\left(B^{2}-57\right)A=-3
A'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(B^{2}-57\right)A}{B^{2}-57}=-\frac{3}{B^{2}-57}
Ikki tarafini B^{2}-57 ga bo‘ling.
A=-\frac{3}{B^{2}-57}
B^{2}-57 ga bo'lish B^{2}-57 ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}