B uchun yechish
B=\frac{5\sqrt{2}+4-2\sqrt{14}-5\sqrt{7}}{17}\approx -0,567117854
B'ni tayinlash (complex solution)
B≔\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(2\sqrt{2}+5\right)}{17}
B'ni tayinlash
B≔\frac{5\sqrt{2}+4-2\sqrt{14}-5\sqrt{7}}{17}
Baham ko'rish
Klipbordga nusxa olish
B=\frac{\sqrt{2}-\sqrt{7}}{5-2\sqrt{2}}
Faktor: 8=2^{2}\times 2. \sqrt{2^{2}\times 2} koʻpaytmasining kvadrat ildizini \sqrt{2^{2}}\sqrt{2} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 2^{2} ning kvadrat ildizini chiqarish.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{\left(5-2\sqrt{2}\right)\left(5+2\sqrt{2}\right)}
\frac{\sqrt{2}-\sqrt{7}}{5-2\sqrt{2}} maxrajini 5+2\sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{5^{2}-\left(-2\sqrt{2}\right)^{2}}
Hisoblang: \left(5-2\sqrt{2}\right)\left(5+2\sqrt{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-\left(-2\sqrt{2}\right)^{2}}
2 daraja ko‘rsatkichini 5 ga hisoblang va 25 ni qiymatni oling.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}}
\left(-2\sqrt{2}\right)^{2} ni kengaytirish.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-4\left(\sqrt{2}\right)^{2}}
2 daraja ko‘rsatkichini -2 ga hisoblang va 4 ni qiymatni oling.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-4\times 2}
\sqrt{2} kvadrati – 2.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{25-8}
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
B=\frac{\left(\sqrt{2}-\sqrt{7}\right)\left(5+2\sqrt{2}\right)}{17}
17 olish uchun 25 dan 8 ni ayirish.
B=\frac{5\sqrt{2}+2\left(\sqrt{2}\right)^{2}-5\sqrt{7}-2\sqrt{7}\sqrt{2}}{17}
\sqrt{2}-\sqrt{7} ifodaning har bir elementini 5+2\sqrt{2} ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
B=\frac{5\sqrt{2}+2\times 2-5\sqrt{7}-2\sqrt{7}\sqrt{2}}{17}
\sqrt{2} kvadrati – 2.
B=\frac{5\sqrt{2}+4-5\sqrt{7}-2\sqrt{7}\sqrt{2}}{17}
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
B=\frac{5\sqrt{2}+4-5\sqrt{7}-2\sqrt{14}}{17}
\sqrt{7} va \sqrt{2} ni koʻpaytirish uchun kvadrat ildiz ichidagi sonlarni koʻpaytiring.
B=\frac{5}{17}\sqrt{2}+\frac{4}{17}-\frac{5}{17}\sqrt{7}-\frac{2}{17}\sqrt{14}
\frac{5}{17}\sqrt{2}+\frac{4}{17}-\frac{5}{17}\sqrt{7}-\frac{2}{17}\sqrt{14} natijani olish uchun 5\sqrt{2}+4-5\sqrt{7}-2\sqrt{14} ning har bir ifodasini 17 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}