A uchun yechish
A = \frac{\sqrt{58}}{2} \approx 3,807886553
A = -\frac{\sqrt{58}}{2} \approx -3,807886553
Baham ko'rish
Klipbordga nusxa olish
A^{2}=\frac{87}{6}
Ikki tarafini 6 ga bo‘ling.
A^{2}=\frac{29}{2}
\frac{87}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
A=\frac{\sqrt{58}}{2} A=-\frac{\sqrt{58}}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
A^{2}=\frac{87}{6}
Ikki tarafini 6 ga bo‘ling.
A^{2}=\frac{29}{2}
\frac{87}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
A^{2}-\frac{29}{2}=0
Ikkala tarafdan \frac{29}{2} ni ayirish.
A=\frac{0±\sqrt{0^{2}-4\left(-\frac{29}{2}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{29}{2} ni c bilan almashtiring.
A=\frac{0±\sqrt{-4\left(-\frac{29}{2}\right)}}{2}
0 kvadratini chiqarish.
A=\frac{0±\sqrt{58}}{2}
-4 ni -\frac{29}{2} marotabaga ko'paytirish.
A=\frac{\sqrt{58}}{2}
A=\frac{0±\sqrt{58}}{2} tenglamasini yeching, bunda ± musbat.
A=-\frac{\sqrt{58}}{2}
A=\frac{0±\sqrt{58}}{2} tenglamasini yeching, bunda ± manfiy.
A=\frac{\sqrt{58}}{2} A=-\frac{\sqrt{58}}{2}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}