Asosiy tarkibga oʻtish
A uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

A^{2}=\frac{87}{6}
Ikki tarafini 6 ga bo‘ling.
A^{2}=\frac{29}{2}
\frac{87}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
A=\frac{\sqrt{58}}{2} A=-\frac{\sqrt{58}}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
A^{2}=\frac{87}{6}
Ikki tarafini 6 ga bo‘ling.
A^{2}=\frac{29}{2}
\frac{87}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
A^{2}-\frac{29}{2}=0
Ikkala tarafdan \frac{29}{2} ni ayirish.
A=\frac{0±\sqrt{0^{2}-4\left(-\frac{29}{2}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{29}{2} ni c bilan almashtiring.
A=\frac{0±\sqrt{-4\left(-\frac{29}{2}\right)}}{2}
0 kvadratini chiqarish.
A=\frac{0±\sqrt{58}}{2}
-4 ni -\frac{29}{2} marotabaga ko'paytirish.
A=\frac{\sqrt{58}}{2}
A=\frac{0±\sqrt{58}}{2} tenglamasini yeching, bunda ± musbat.
A=-\frac{\sqrt{58}}{2}
A=\frac{0±\sqrt{58}}{2} tenglamasini yeching, bunda ± manfiy.
A=\frac{\sqrt{58}}{2} A=-\frac{\sqrt{58}}{2}
Tenglama yechildi.