A uchun yechish
A=\left(\frac{9999}{10000}+\frac{1}{50}i\right)P
P uchun yechish
P=\left(\frac{99990000}{100020001}-\frac{2000000}{100020001}i\right)A
Baham ko'rish
Klipbordga nusxa olish
A=P\left(1+\frac{1}{100}i\right)^{2}
\frac{1}{100}i ni olish uchun i ni 100 ga bo‘ling.
A=P\left(\frac{9999}{10000}+\frac{1}{50}i\right)
2 daraja ko‘rsatkichini 1+\frac{1}{100}i ga hisoblang va \frac{9999}{10000}+\frac{1}{50}i ni qiymatni oling.
A=P\left(1+\frac{1}{100}i\right)^{2}
\frac{1}{100}i ni olish uchun i ni 100 ga bo‘ling.
A=P\left(\frac{9999}{10000}+\frac{1}{50}i\right)
2 daraja ko‘rsatkichini 1+\frac{1}{100}i ga hisoblang va \frac{9999}{10000}+\frac{1}{50}i ni qiymatni oling.
P\left(\frac{9999}{10000}+\frac{1}{50}i\right)=A
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\left(\frac{9999}{10000}+\frac{1}{50}i\right)P=A
Tenglama standart shaklda.
\frac{\left(\frac{9999}{10000}+\frac{1}{50}i\right)P}{\frac{9999}{10000}+\frac{1}{50}i}=\frac{A}{\frac{9999}{10000}+\frac{1}{50}i}
Ikki tarafini \frac{9999}{10000}+\frac{1}{50}i ga bo‘ling.
P=\frac{A}{\frac{9999}{10000}+\frac{1}{50}i}
\frac{9999}{10000}+\frac{1}{50}i ga bo'lish \frac{9999}{10000}+\frac{1}{50}i ga ko'paytirishni bekor qiladi.
P=\left(\frac{99990000}{100020001}-\frac{2000000}{100020001}i\right)A
A ni \frac{9999}{10000}+\frac{1}{50}i ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}