Asosiy tarkibga oʻtish
b uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

b^{2}=\frac{2}{98}
Ikki tarafini 98 ga bo‘ling.
b^{2}=\frac{1}{49}
\frac{2}{98} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
b^{2}-\frac{1}{49}=0
Ikkala tarafdan \frac{1}{49} ni ayirish.
49b^{2}-1=0
Ikkala tarafini 49 ga ko‘paytiring.
\left(7b-1\right)\left(7b+1\right)=0
Hisoblang: 49b^{2}-1. 49b^{2}-1 ni \left(7b\right)^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
b=\frac{1}{7} b=-\frac{1}{7}
Tenglamani yechish uchun 7b-1=0 va 7b+1=0 ni yeching.
b^{2}=\frac{2}{98}
Ikki tarafini 98 ga bo‘ling.
b^{2}=\frac{1}{49}
\frac{2}{98} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
b=\frac{1}{7} b=-\frac{1}{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
b^{2}=\frac{2}{98}
Ikki tarafini 98 ga bo‘ling.
b^{2}=\frac{1}{49}
\frac{2}{98} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
b^{2}-\frac{1}{49}=0
Ikkala tarafdan \frac{1}{49} ni ayirish.
b=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{49}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{1}{49} ni c bilan almashtiring.
b=\frac{0±\sqrt{-4\left(-\frac{1}{49}\right)}}{2}
0 kvadratini chiqarish.
b=\frac{0±\sqrt{\frac{4}{49}}}{2}
-4 ni -\frac{1}{49} marotabaga ko'paytirish.
b=\frac{0±\frac{2}{7}}{2}
\frac{4}{49} ning kvadrat ildizini chiqarish.
b=\frac{1}{7}
b=\frac{0±\frac{2}{7}}{2} tenglamasini yeching, bunda ± musbat.
b=-\frac{1}{7}
b=\frac{0±\frac{2}{7}}{2} tenglamasini yeching, bunda ± manfiy.
b=\frac{1}{7} b=-\frac{1}{7}
Tenglama yechildi.