b uchun yechish
b=\frac{1}{7}\approx 0,142857143
b=-\frac{1}{7}\approx -0,142857143
Baham ko'rish
Klipbordga nusxa olish
b^{2}=\frac{2}{98}
Ikki tarafini 98 ga bo‘ling.
b^{2}=\frac{1}{49}
\frac{2}{98} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
b^{2}-\frac{1}{49}=0
Ikkala tarafdan \frac{1}{49} ni ayirish.
49b^{2}-1=0
Ikkala tarafini 49 ga ko‘paytiring.
\left(7b-1\right)\left(7b+1\right)=0
Hisoblang: 49b^{2}-1. 49b^{2}-1 ni \left(7b\right)^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
b=\frac{1}{7} b=-\frac{1}{7}
Tenglamani yechish uchun 7b-1=0 va 7b+1=0 ni yeching.
b^{2}=\frac{2}{98}
Ikki tarafini 98 ga bo‘ling.
b^{2}=\frac{1}{49}
\frac{2}{98} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
b=\frac{1}{7} b=-\frac{1}{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
b^{2}=\frac{2}{98}
Ikki tarafini 98 ga bo‘ling.
b^{2}=\frac{1}{49}
\frac{2}{98} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
b^{2}-\frac{1}{49}=0
Ikkala tarafdan \frac{1}{49} ni ayirish.
b=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{49}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{1}{49} ni c bilan almashtiring.
b=\frac{0±\sqrt{-4\left(-\frac{1}{49}\right)}}{2}
0 kvadratini chiqarish.
b=\frac{0±\sqrt{\frac{4}{49}}}{2}
-4 ni -\frac{1}{49} marotabaga ko'paytirish.
b=\frac{0±\frac{2}{7}}{2}
\frac{4}{49} ning kvadrat ildizini chiqarish.
b=\frac{1}{7}
b=\frac{0±\frac{2}{7}}{2} tenglamasini yeching, bunda ± musbat.
b=-\frac{1}{7}
b=\frac{0±\frac{2}{7}}{2} tenglamasini yeching, bunda ± manfiy.
b=\frac{1}{7} b=-\frac{1}{7}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}