x uchun yechish (complex solution)
x=\sqrt{985}-10\approx 21,384709653
x=-\left(\sqrt{985}+10\right)\approx -41,384709653
x uchun yechish
x=\sqrt{985}-10\approx 21,384709653
x=-\sqrt{985}-10\approx -41,384709653
Grafik
Baham ko'rish
Klipbordga nusxa olish
960=x^{2}+20x+75
x+15 ga x+5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+20x+75=960
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}+20x+75-960=0
Ikkala tarafdan 960 ni ayirish.
x^{2}+20x-885=0
-885 olish uchun 75 dan 960 ni ayirish.
x=\frac{-20±\sqrt{20^{2}-4\left(-885\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 20 ni b va -885 ni c bilan almashtiring.
x=\frac{-20±\sqrt{400-4\left(-885\right)}}{2}
20 kvadratini chiqarish.
x=\frac{-20±\sqrt{400+3540}}{2}
-4 ni -885 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{3940}}{2}
400 ni 3540 ga qo'shish.
x=\frac{-20±2\sqrt{985}}{2}
3940 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{985}-20}{2}
x=\frac{-20±2\sqrt{985}}{2} tenglamasini yeching, bunda ± musbat. -20 ni 2\sqrt{985} ga qo'shish.
x=\sqrt{985}-10
-20+2\sqrt{985} ni 2 ga bo'lish.
x=\frac{-2\sqrt{985}-20}{2}
x=\frac{-20±2\sqrt{985}}{2} tenglamasini yeching, bunda ± manfiy. -20 dan 2\sqrt{985} ni ayirish.
x=-\sqrt{985}-10
-20-2\sqrt{985} ni 2 ga bo'lish.
x=\sqrt{985}-10 x=-\sqrt{985}-10
Tenglama yechildi.
960=x^{2}+20x+75
x+15 ga x+5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+20x+75=960
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}+20x=960-75
Ikkala tarafdan 75 ni ayirish.
x^{2}+20x=885
885 olish uchun 960 dan 75 ni ayirish.
x^{2}+20x+10^{2}=885+10^{2}
20 ni bo‘lish, x shartining koeffitsienti, 2 ga 10 olish uchun. Keyin, 10 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+20x+100=885+100
10 kvadratini chiqarish.
x^{2}+20x+100=985
885 ni 100 ga qo'shish.
\left(x+10\right)^{2}=985
x^{2}+20x+100 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+10\right)^{2}}=\sqrt{985}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+10=\sqrt{985} x+10=-\sqrt{985}
Qisqartirish.
x=\sqrt{985}-10 x=-\sqrt{985}-10
Tenglamaning ikkala tarafidan 10 ni ayirish.
960=x^{2}+20x+75
x+15 ga x+5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+20x+75=960
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}+20x+75-960=0
Ikkala tarafdan 960 ni ayirish.
x^{2}+20x-885=0
-885 olish uchun 75 dan 960 ni ayirish.
x=\frac{-20±\sqrt{20^{2}-4\left(-885\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 20 ni b va -885 ni c bilan almashtiring.
x=\frac{-20±\sqrt{400-4\left(-885\right)}}{2}
20 kvadratini chiqarish.
x=\frac{-20±\sqrt{400+3540}}{2}
-4 ni -885 marotabaga ko'paytirish.
x=\frac{-20±\sqrt{3940}}{2}
400 ni 3540 ga qo'shish.
x=\frac{-20±2\sqrt{985}}{2}
3940 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{985}-20}{2}
x=\frac{-20±2\sqrt{985}}{2} tenglamasini yeching, bunda ± musbat. -20 ni 2\sqrt{985} ga qo'shish.
x=\sqrt{985}-10
-20+2\sqrt{985} ni 2 ga bo'lish.
x=\frac{-2\sqrt{985}-20}{2}
x=\frac{-20±2\sqrt{985}}{2} tenglamasini yeching, bunda ± manfiy. -20 dan 2\sqrt{985} ni ayirish.
x=-\sqrt{985}-10
-20-2\sqrt{985} ni 2 ga bo'lish.
x=\sqrt{985}-10 x=-\sqrt{985}-10
Tenglama yechildi.
960=x^{2}+20x+75
x+15 ga x+5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+20x+75=960
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}+20x=960-75
Ikkala tarafdan 75 ni ayirish.
x^{2}+20x=885
885 olish uchun 960 dan 75 ni ayirish.
x^{2}+20x+10^{2}=885+10^{2}
20 ni bo‘lish, x shartining koeffitsienti, 2 ga 10 olish uchun. Keyin, 10 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+20x+100=885+100
10 kvadratini chiqarish.
x^{2}+20x+100=985
885 ni 100 ga qo'shish.
\left(x+10\right)^{2}=985
x^{2}+20x+100 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+10\right)^{2}}=\sqrt{985}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+10=\sqrt{985} x+10=-\sqrt{985}
Qisqartirish.
x=\sqrt{985}-10 x=-\sqrt{985}-10
Tenglamaning ikkala tarafidan 10 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}