z uchun yechish
z=4
z=-4
Baham ko'rish
Klipbordga nusxa olish
96-6z^{2}=0
-6z^{2} ni olish uchun -2z^{2} va -4z^{2} ni birlashtirish.
-6z^{2}=-96
Ikkala tarafdan 96 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
z^{2}=\frac{-96}{-6}
Ikki tarafini -6 ga bo‘ling.
z^{2}=16
16 ni olish uchun -96 ni -6 ga bo‘ling.
z=4 z=-4
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
96-6z^{2}=0
-6z^{2} ni olish uchun -2z^{2} va -4z^{2} ni birlashtirish.
-6z^{2}+96=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
z=\frac{0±\sqrt{0^{2}-4\left(-6\right)\times 96}}{2\left(-6\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -6 ni a, 0 ni b va 96 ni c bilan almashtiring.
z=\frac{0±\sqrt{-4\left(-6\right)\times 96}}{2\left(-6\right)}
0 kvadratini chiqarish.
z=\frac{0±\sqrt{24\times 96}}{2\left(-6\right)}
-4 ni -6 marotabaga ko'paytirish.
z=\frac{0±\sqrt{2304}}{2\left(-6\right)}
24 ni 96 marotabaga ko'paytirish.
z=\frac{0±48}{2\left(-6\right)}
2304 ning kvadrat ildizini chiqarish.
z=\frac{0±48}{-12}
2 ni -6 marotabaga ko'paytirish.
z=-4
z=\frac{0±48}{-12} tenglamasini yeching, bunda ± musbat. 48 ni -12 ga bo'lish.
z=4
z=\frac{0±48}{-12} tenglamasini yeching, bunda ± manfiy. -48 ni -12 ga bo'lish.
z=-4 z=4
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}