x uchun yechish
x=\sqrt{1081}+9\approx 41,878564446
x=9-\sqrt{1081}\approx -23,878564446
Grafik
Baham ko'rish
Klipbordga nusxa olish
1920=\left(2-6-2x\right)\left(20-x\right)
1920 hosil qilish uchun 96 va 20 ni ko'paytirish.
1920=\left(-4-2x\right)\left(20-x\right)
-4 olish uchun 2 dan 6 ni ayirish.
1920=-80-36x+2x^{2}
-4-2x ga 20-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-80-36x+2x^{2}=1920
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-80-36x+2x^{2}-1920=0
Ikkala tarafdan 1920 ni ayirish.
-2000-36x+2x^{2}=0
-2000 olish uchun -80 dan 1920 ni ayirish.
2x^{2}-36x-2000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 2\left(-2000\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -36 ni b va -2000 ni c bilan almashtiring.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 2\left(-2000\right)}}{2\times 2}
-36 kvadratini chiqarish.
x=\frac{-\left(-36\right)±\sqrt{1296-8\left(-2000\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-36\right)±\sqrt{1296+16000}}{2\times 2}
-8 ni -2000 marotabaga ko'paytirish.
x=\frac{-\left(-36\right)±\sqrt{17296}}{2\times 2}
1296 ni 16000 ga qo'shish.
x=\frac{-\left(-36\right)±4\sqrt{1081}}{2\times 2}
17296 ning kvadrat ildizini chiqarish.
x=\frac{36±4\sqrt{1081}}{2\times 2}
-36 ning teskarisi 36 ga teng.
x=\frac{36±4\sqrt{1081}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{4\sqrt{1081}+36}{4}
x=\frac{36±4\sqrt{1081}}{4} tenglamasini yeching, bunda ± musbat. 36 ni 4\sqrt{1081} ga qo'shish.
x=\sqrt{1081}+9
36+4\sqrt{1081} ni 4 ga bo'lish.
x=\frac{36-4\sqrt{1081}}{4}
x=\frac{36±4\sqrt{1081}}{4} tenglamasini yeching, bunda ± manfiy. 36 dan 4\sqrt{1081} ni ayirish.
x=9-\sqrt{1081}
36-4\sqrt{1081} ni 4 ga bo'lish.
x=\sqrt{1081}+9 x=9-\sqrt{1081}
Tenglama yechildi.
1920=\left(2-6-2x\right)\left(20-x\right)
1920 hosil qilish uchun 96 va 20 ni ko'paytirish.
1920=\left(-4-2x\right)\left(20-x\right)
-4 olish uchun 2 dan 6 ni ayirish.
1920=-80-36x+2x^{2}
-4-2x ga 20-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-80-36x+2x^{2}=1920
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-36x+2x^{2}=1920+80
80 ni ikki tarafga qo’shing.
-36x+2x^{2}=2000
2000 olish uchun 1920 va 80'ni qo'shing.
2x^{2}-36x=2000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{2x^{2}-36x}{2}=\frac{2000}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{36}{2}\right)x=\frac{2000}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-18x=\frac{2000}{2}
-36 ni 2 ga bo'lish.
x^{2}-18x=1000
2000 ni 2 ga bo'lish.
x^{2}-18x+\left(-9\right)^{2}=1000+\left(-9\right)^{2}
-18 ni bo‘lish, x shartining koeffitsienti, 2 ga -9 olish uchun. Keyin, -9 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-18x+81=1000+81
-9 kvadratini chiqarish.
x^{2}-18x+81=1081
1000 ni 81 ga qo'shish.
\left(x-9\right)^{2}=1081
x^{2}-18x+81 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-9\right)^{2}}=\sqrt{1081}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-9=\sqrt{1081} x-9=-\sqrt{1081}
Qisqartirish.
x=\sqrt{1081}+9 x=9-\sqrt{1081}
9 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}