q uchun yechish
q = \frac{\sqrt{94}}{2} \approx 4,847679857
q = -\frac{\sqrt{94}}{2} \approx -4,847679857
Baham ko'rish
Klipbordga nusxa olish
-4q^{2}=-94
Ikkala tarafdan 94 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
q^{2}=\frac{-94}{-4}
Ikki tarafini -4 ga bo‘ling.
q^{2}=\frac{47}{2}
\frac{-94}{-4} ulushini -2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
q=\frac{\sqrt{94}}{2} q=-\frac{\sqrt{94}}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
-4q^{2}+94=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
q=\frac{0±\sqrt{0^{2}-4\left(-4\right)\times 94}}{2\left(-4\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -4 ni a, 0 ni b va 94 ni c bilan almashtiring.
q=\frac{0±\sqrt{-4\left(-4\right)\times 94}}{2\left(-4\right)}
0 kvadratini chiqarish.
q=\frac{0±\sqrt{16\times 94}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
q=\frac{0±\sqrt{1504}}{2\left(-4\right)}
16 ni 94 marotabaga ko'paytirish.
q=\frac{0±4\sqrt{94}}{2\left(-4\right)}
1504 ning kvadrat ildizini chiqarish.
q=\frac{0±4\sqrt{94}}{-8}
2 ni -4 marotabaga ko'paytirish.
q=-\frac{\sqrt{94}}{2}
q=\frac{0±4\sqrt{94}}{-8} tenglamasini yeching, bunda ± musbat.
q=\frac{\sqrt{94}}{2}
q=\frac{0±4\sqrt{94}}{-8} tenglamasini yeching, bunda ± manfiy.
q=-\frac{\sqrt{94}}{2} q=\frac{\sqrt{94}}{2}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}