Asosiy tarkibga oʻtish
q uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-4q^{2}=-94
Ikkala tarafdan 94 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
q^{2}=\frac{-94}{-4}
Ikki tarafini -4 ga bo‘ling.
q^{2}=\frac{47}{2}
\frac{-94}{-4} ulushini -2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
q=\frac{\sqrt{94}}{2} q=-\frac{\sqrt{94}}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
-4q^{2}+94=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
q=\frac{0±\sqrt{0^{2}-4\left(-4\right)\times 94}}{2\left(-4\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -4 ni a, 0 ni b va 94 ni c bilan almashtiring.
q=\frac{0±\sqrt{-4\left(-4\right)\times 94}}{2\left(-4\right)}
0 kvadratini chiqarish.
q=\frac{0±\sqrt{16\times 94}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
q=\frac{0±\sqrt{1504}}{2\left(-4\right)}
16 ni 94 marotabaga ko'paytirish.
q=\frac{0±4\sqrt{94}}{2\left(-4\right)}
1504 ning kvadrat ildizini chiqarish.
q=\frac{0±4\sqrt{94}}{-8}
2 ni -4 marotabaga ko'paytirish.
q=-\frac{\sqrt{94}}{2}
q=\frac{0±4\sqrt{94}}{-8} tenglamasini yeching, bunda ± musbat.
q=\frac{\sqrt{94}}{2}
q=\frac{0±4\sqrt{94}}{-8} tenglamasini yeching, bunda ± manfiy.
q=-\frac{\sqrt{94}}{2} q=\frac{\sqrt{94}}{2}
Tenglama yechildi.