Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

930=x^{2}+3x+2
x+1 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+3x+2=930
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}+3x+2-930=0
Ikkala tarafdan 930 ni ayirish.
x^{2}+3x-928=0
-928 olish uchun 2 dan 930 ni ayirish.
x=\frac{-3±\sqrt{3^{2}-4\left(-928\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 3 ni b va -928 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\left(-928\right)}}{2}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9+3712}}{2}
-4 ni -928 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{3721}}{2}
9 ni 3712 ga qo'shish.
x=\frac{-3±61}{2}
3721 ning kvadrat ildizini chiqarish.
x=\frac{58}{2}
x=\frac{-3±61}{2} tenglamasini yeching, bunda ± musbat. -3 ni 61 ga qo'shish.
x=29
58 ni 2 ga bo'lish.
x=-\frac{64}{2}
x=\frac{-3±61}{2} tenglamasini yeching, bunda ± manfiy. -3 dan 61 ni ayirish.
x=-32
-64 ni 2 ga bo'lish.
x=29 x=-32
Tenglama yechildi.
930=x^{2}+3x+2
x+1 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+3x+2=930
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}+3x=930-2
Ikkala tarafdan 2 ni ayirish.
x^{2}+3x=928
928 olish uchun 930 dan 2 ni ayirish.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=928+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+3x+\frac{9}{4}=928+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
x^{2}+3x+\frac{9}{4}=\frac{3721}{4}
928 ni \frac{9}{4} ga qo'shish.
\left(x+\frac{3}{2}\right)^{2}=\frac{3721}{4}
x^{2}+3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{3721}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2}=\frac{61}{2} x+\frac{3}{2}=-\frac{61}{2}
Qisqartirish.
x=29 x=-32
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.