Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

921m^{2}+11m-2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
m=\frac{-11±\sqrt{11^{2}-4\times 921\left(-2\right)}}{2\times 921}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
m=\frac{-11±\sqrt{121-4\times 921\left(-2\right)}}{2\times 921}
11 kvadratini chiqarish.
m=\frac{-11±\sqrt{121-3684\left(-2\right)}}{2\times 921}
-4 ni 921 marotabaga ko'paytirish.
m=\frac{-11±\sqrt{121+7368}}{2\times 921}
-3684 ni -2 marotabaga ko'paytirish.
m=\frac{-11±\sqrt{7489}}{2\times 921}
121 ni 7368 ga qo'shish.
m=\frac{-11±\sqrt{7489}}{1842}
2 ni 921 marotabaga ko'paytirish.
m=\frac{\sqrt{7489}-11}{1842}
m=\frac{-11±\sqrt{7489}}{1842} tenglamasini yeching, bunda ± musbat. -11 ni \sqrt{7489} ga qo'shish.
m=\frac{-\sqrt{7489}-11}{1842}
m=\frac{-11±\sqrt{7489}}{1842} tenglamasini yeching, bunda ± manfiy. -11 dan \sqrt{7489} ni ayirish.
921m^{2}+11m-2=921\left(m-\frac{\sqrt{7489}-11}{1842}\right)\left(m-\frac{-\sqrt{7489}-11}{1842}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-11+\sqrt{7489}}{1842} ga va x_{2} uchun \frac{-11-\sqrt{7489}}{1842} ga bo‘ling.