Omil
921\left(m-\frac{-\sqrt{7489}-11}{1842}\right)\left(m-\frac{\sqrt{7489}-11}{1842}\right)
Baholash
921m^{2}+11m-2
Baham ko'rish
Klipbordga nusxa olish
921m^{2}+11m-2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
m=\frac{-11±\sqrt{11^{2}-4\times 921\left(-2\right)}}{2\times 921}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
m=\frac{-11±\sqrt{121-4\times 921\left(-2\right)}}{2\times 921}
11 kvadratini chiqarish.
m=\frac{-11±\sqrt{121-3684\left(-2\right)}}{2\times 921}
-4 ni 921 marotabaga ko'paytirish.
m=\frac{-11±\sqrt{121+7368}}{2\times 921}
-3684 ni -2 marotabaga ko'paytirish.
m=\frac{-11±\sqrt{7489}}{2\times 921}
121 ni 7368 ga qo'shish.
m=\frac{-11±\sqrt{7489}}{1842}
2 ni 921 marotabaga ko'paytirish.
m=\frac{\sqrt{7489}-11}{1842}
m=\frac{-11±\sqrt{7489}}{1842} tenglamasini yeching, bunda ± musbat. -11 ni \sqrt{7489} ga qo'shish.
m=\frac{-\sqrt{7489}-11}{1842}
m=\frac{-11±\sqrt{7489}}{1842} tenglamasini yeching, bunda ± manfiy. -11 dan \sqrt{7489} ni ayirish.
921m^{2}+11m-2=921\left(m-\frac{\sqrt{7489}-11}{1842}\right)\left(m-\frac{-\sqrt{7489}-11}{1842}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-11+\sqrt{7489}}{1842} ga va x_{2} uchun \frac{-11-\sqrt{7489}}{1842} ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}