x uchun yechish
x=4\sqrt{53}+4\approx 33,120439557
x=4-4\sqrt{53}\approx -25,120439557
Grafik
Baham ko'rish
Klipbordga nusxa olish
81+x^{2}-8x=913
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
81+x^{2}-8x-913=0
Ikkala tarafdan 913 ni ayirish.
-832+x^{2}-8x=0
-832 olish uchun 81 dan 913 ni ayirish.
x^{2}-8x-832=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-832\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -8 ni b va -832 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-832\right)}}{2}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64+3328}}{2}
-4 ni -832 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{3392}}{2}
64 ni 3328 ga qo'shish.
x=\frac{-\left(-8\right)±8\sqrt{53}}{2}
3392 ning kvadrat ildizini chiqarish.
x=\frac{8±8\sqrt{53}}{2}
-8 ning teskarisi 8 ga teng.
x=\frac{8\sqrt{53}+8}{2}
x=\frac{8±8\sqrt{53}}{2} tenglamasini yeching, bunda ± musbat. 8 ni 8\sqrt{53} ga qo'shish.
x=4\sqrt{53}+4
8+8\sqrt{53} ni 2 ga bo'lish.
x=\frac{8-8\sqrt{53}}{2}
x=\frac{8±8\sqrt{53}}{2} tenglamasini yeching, bunda ± manfiy. 8 dan 8\sqrt{53} ni ayirish.
x=4-4\sqrt{53}
8-8\sqrt{53} ni 2 ga bo'lish.
x=4\sqrt{53}+4 x=4-4\sqrt{53}
Tenglama yechildi.
81+x^{2}-8x=913
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
x^{2}-8x=913-81
Ikkala tarafdan 81 ni ayirish.
x^{2}-8x=832
832 olish uchun 913 dan 81 ni ayirish.
x^{2}-8x+\left(-4\right)^{2}=832+\left(-4\right)^{2}
-8 ni bo‘lish, x shartining koeffitsienti, 2 ga -4 olish uchun. Keyin, -4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-8x+16=832+16
-4 kvadratini chiqarish.
x^{2}-8x+16=848
832 ni 16 ga qo'shish.
\left(x-4\right)^{2}=848
x^{2}-8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-4\right)^{2}}=\sqrt{848}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-4=4\sqrt{53} x-4=-4\sqrt{53}
Qisqartirish.
x=4\sqrt{53}+4 x=4-4\sqrt{53}
4 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}