x uchun yechish (complex solution)
x=-\frac{2\sqrt{22470}i}{25}+9\approx 9-11,991997332i
x=\frac{2\sqrt{22470}i}{25}+9\approx 9+11,991997332i
Grafik
Baham ko'rish
Klipbordga nusxa olish
90000=120-625\left(x^{2}-18x+81\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-9\right)^{2} kengaytirilishi uchun ishlating.
90000=120-625x^{2}+11250x-50625
-625 ga x^{2}-18x+81 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
90000=-50505-625x^{2}+11250x
-50505 olish uchun 120 dan 50625 ni ayirish.
-50505-625x^{2}+11250x=90000
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-50505-625x^{2}+11250x-90000=0
Ikkala tarafdan 90000 ni ayirish.
-140505-625x^{2}+11250x=0
-140505 olish uchun -50505 dan 90000 ni ayirish.
-625x^{2}+11250x-140505=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-11250±\sqrt{11250^{2}-4\left(-625\right)\left(-140505\right)}}{2\left(-625\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -625 ni a, 11250 ni b va -140505 ni c bilan almashtiring.
x=\frac{-11250±\sqrt{126562500-4\left(-625\right)\left(-140505\right)}}{2\left(-625\right)}
11250 kvadratini chiqarish.
x=\frac{-11250±\sqrt{126562500+2500\left(-140505\right)}}{2\left(-625\right)}
-4 ni -625 marotabaga ko'paytirish.
x=\frac{-11250±\sqrt{126562500-351262500}}{2\left(-625\right)}
2500 ni -140505 marotabaga ko'paytirish.
x=\frac{-11250±\sqrt{-224700000}}{2\left(-625\right)}
126562500 ni -351262500 ga qo'shish.
x=\frac{-11250±100\sqrt{22470}i}{2\left(-625\right)}
-224700000 ning kvadrat ildizini chiqarish.
x=\frac{-11250±100\sqrt{22470}i}{-1250}
2 ni -625 marotabaga ko'paytirish.
x=\frac{-11250+100\sqrt{22470}i}{-1250}
x=\frac{-11250±100\sqrt{22470}i}{-1250} tenglamasini yeching, bunda ± musbat. -11250 ni 100i\sqrt{22470} ga qo'shish.
x=-\frac{2\sqrt{22470}i}{25}+9
-11250+100i\sqrt{22470} ni -1250 ga bo'lish.
x=\frac{-100\sqrt{22470}i-11250}{-1250}
x=\frac{-11250±100\sqrt{22470}i}{-1250} tenglamasini yeching, bunda ± manfiy. -11250 dan 100i\sqrt{22470} ni ayirish.
x=\frac{2\sqrt{22470}i}{25}+9
-11250-100i\sqrt{22470} ni -1250 ga bo'lish.
x=-\frac{2\sqrt{22470}i}{25}+9 x=\frac{2\sqrt{22470}i}{25}+9
Tenglama yechildi.
90000=120-625\left(x^{2}-18x+81\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-9\right)^{2} kengaytirilishi uchun ishlating.
90000=120-625x^{2}+11250x-50625
-625 ga x^{2}-18x+81 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
90000=-50505-625x^{2}+11250x
-50505 olish uchun 120 dan 50625 ni ayirish.
-50505-625x^{2}+11250x=90000
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-625x^{2}+11250x=90000+50505
50505 ni ikki tarafga qo’shing.
-625x^{2}+11250x=140505
140505 olish uchun 90000 va 50505'ni qo'shing.
\frac{-625x^{2}+11250x}{-625}=\frac{140505}{-625}
Ikki tarafini -625 ga bo‘ling.
x^{2}+\frac{11250}{-625}x=\frac{140505}{-625}
-625 ga bo'lish -625 ga ko'paytirishni bekor qiladi.
x^{2}-18x=\frac{140505}{-625}
11250 ni -625 ga bo'lish.
x^{2}-18x=-\frac{28101}{125}
\frac{140505}{-625} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-18x+\left(-9\right)^{2}=-\frac{28101}{125}+\left(-9\right)^{2}
-18 ni bo‘lish, x shartining koeffitsienti, 2 ga -9 olish uchun. Keyin, -9 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-18x+81=-\frac{28101}{125}+81
-9 kvadratini chiqarish.
x^{2}-18x+81=-\frac{17976}{125}
-\frac{28101}{125} ni 81 ga qo'shish.
\left(x-9\right)^{2}=-\frac{17976}{125}
x^{2}-18x+81 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-9\right)^{2}}=\sqrt{-\frac{17976}{125}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-9=\frac{2\sqrt{22470}i}{25} x-9=-\frac{2\sqrt{22470}i}{25}
Qisqartirish.
x=\frac{2\sqrt{22470}i}{25}+9 x=-\frac{2\sqrt{22470}i}{25}+9
9 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}