Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

98x^{2}+40x-30=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-40±\sqrt{40^{2}-4\times 98\left(-30\right)}}{2\times 98}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 98 ni a, 40 ni b va -30 ni c bilan almashtiring.
x=\frac{-40±\sqrt{1600-4\times 98\left(-30\right)}}{2\times 98}
40 kvadratini chiqarish.
x=\frac{-40±\sqrt{1600-392\left(-30\right)}}{2\times 98}
-4 ni 98 marotabaga ko'paytirish.
x=\frac{-40±\sqrt{1600+11760}}{2\times 98}
-392 ni -30 marotabaga ko'paytirish.
x=\frac{-40±\sqrt{13360}}{2\times 98}
1600 ni 11760 ga qo'shish.
x=\frac{-40±4\sqrt{835}}{2\times 98}
13360 ning kvadrat ildizini chiqarish.
x=\frac{-40±4\sqrt{835}}{196}
2 ni 98 marotabaga ko'paytirish.
x=\frac{4\sqrt{835}-40}{196}
x=\frac{-40±4\sqrt{835}}{196} tenglamasini yeching, bunda ± musbat. -40 ni 4\sqrt{835} ga qo'shish.
x=\frac{\sqrt{835}-10}{49}
-40+4\sqrt{835} ni 196 ga bo'lish.
x=\frac{-4\sqrt{835}-40}{196}
x=\frac{-40±4\sqrt{835}}{196} tenglamasini yeching, bunda ± manfiy. -40 dan 4\sqrt{835} ni ayirish.
x=\frac{-\sqrt{835}-10}{49}
-40-4\sqrt{835} ni 196 ga bo'lish.
x=\frac{\sqrt{835}-10}{49} x=\frac{-\sqrt{835}-10}{49}
Tenglama yechildi.
98x^{2}+40x-30=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
98x^{2}+40x-30-\left(-30\right)=-\left(-30\right)
30 ni tenglamaning ikkala tarafiga qo'shish.
98x^{2}+40x=-\left(-30\right)
O‘zidan -30 ayirilsa 0 qoladi.
98x^{2}+40x=30
0 dan -30 ni ayirish.
\frac{98x^{2}+40x}{98}=\frac{30}{98}
Ikki tarafini 98 ga bo‘ling.
x^{2}+\frac{40}{98}x=\frac{30}{98}
98 ga bo'lish 98 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{20}{49}x=\frac{30}{98}
\frac{40}{98} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{20}{49}x=\frac{15}{49}
\frac{30}{98} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{20}{49}x+\left(\frac{10}{49}\right)^{2}=\frac{15}{49}+\left(\frac{10}{49}\right)^{2}
\frac{20}{49} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{10}{49} olish uchun. Keyin, \frac{10}{49} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{20}{49}x+\frac{100}{2401}=\frac{15}{49}+\frac{100}{2401}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{10}{49} kvadratini chiqarish.
x^{2}+\frac{20}{49}x+\frac{100}{2401}=\frac{835}{2401}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{15}{49} ni \frac{100}{2401} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{10}{49}\right)^{2}=\frac{835}{2401}
x^{2}+\frac{20}{49}x+\frac{100}{2401} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{10}{49}\right)^{2}}=\sqrt{\frac{835}{2401}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{10}{49}=\frac{\sqrt{835}}{49} x+\frac{10}{49}=-\frac{\sqrt{835}}{49}
Qisqartirish.
x=\frac{\sqrt{835}-10}{49} x=\frac{-\sqrt{835}-10}{49}
Tenglamaning ikkala tarafidan \frac{10}{49} ni ayirish.