y uchun yechish
y=\frac{-4z-128}{27}
z uchun yechish
z=-\frac{27y}{4}-32
Baham ko'rish
Klipbordga nusxa olish
-36-\frac{27}{2}y-2z=28
9 ga -4-\frac{3}{2}y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{27}{2}y-2z=28+36
36 ni ikki tarafga qo’shing.
-\frac{27}{2}y-2z=64
64 olish uchun 28 va 36'ni qo'shing.
-\frac{27}{2}y=64+2z
2z ni ikki tarafga qo’shing.
-\frac{27}{2}y=2z+64
Tenglama standart shaklda.
\frac{-\frac{27}{2}y}{-\frac{27}{2}}=\frac{2z+64}{-\frac{27}{2}}
Tenglamaning ikki tarafini -\frac{27}{2} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
y=\frac{2z+64}{-\frac{27}{2}}
-\frac{27}{2} ga bo'lish -\frac{27}{2} ga ko'paytirishni bekor qiladi.
y=\frac{-4z-128}{27}
64+2z ni -\frac{27}{2} ga bo'lish 64+2z ga k'paytirish -\frac{27}{2} ga qaytarish.
-36-\frac{27}{2}y-2z=28
9 ga -4-\frac{3}{2}y ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{27}{2}y-2z=28+36
36 ni ikki tarafga qo’shing.
-\frac{27}{2}y-2z=64
64 olish uchun 28 va 36'ni qo'shing.
-2z=64+\frac{27}{2}y
\frac{27}{2}y ni ikki tarafga qo’shing.
-2z=\frac{27y}{2}+64
Tenglama standart shaklda.
\frac{-2z}{-2}=\frac{\frac{27y}{2}+64}{-2}
Ikki tarafini -2 ga bo‘ling.
z=\frac{\frac{27y}{2}+64}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
z=-\frac{27y}{4}-32
64+\frac{27y}{2} ni -2 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}