Omil
\left(z-2\right)\left(9z+1\right)
Baholash
\left(z-2\right)\left(9z+1\right)
Baham ko'rish
Klipbordga nusxa olish
a+b=-17 ab=9\left(-2\right)=-18
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 9z^{2}+az+bz-2 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-18 2,-9 3,-6
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -18-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-18=-17 2-9=-7 3-6=-3
Har bir juftlik yigʻindisini hisoblang.
a=-18 b=1
Yechim – -17 yigʻindisini beruvchi juftlik.
\left(9z^{2}-18z\right)+\left(z-2\right)
9z^{2}-17z-2 ni \left(9z^{2}-18z\right)+\left(z-2\right) sifatida qaytadan yozish.
9z\left(z-2\right)+z-2
9z^{2}-18z ichida 9z ni ajrating.
\left(z-2\right)\left(9z+1\right)
Distributiv funktsiyasidan foydalangan holda z-2 umumiy terminini chiqaring.
9z^{2}-17z-2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
z=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 9\left(-2\right)}}{2\times 9}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
z=\frac{-\left(-17\right)±\sqrt{289-4\times 9\left(-2\right)}}{2\times 9}
-17 kvadratini chiqarish.
z=\frac{-\left(-17\right)±\sqrt{289-36\left(-2\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
z=\frac{-\left(-17\right)±\sqrt{289+72}}{2\times 9}
-36 ni -2 marotabaga ko'paytirish.
z=\frac{-\left(-17\right)±\sqrt{361}}{2\times 9}
289 ni 72 ga qo'shish.
z=\frac{-\left(-17\right)±19}{2\times 9}
361 ning kvadrat ildizini chiqarish.
z=\frac{17±19}{2\times 9}
-17 ning teskarisi 17 ga teng.
z=\frac{17±19}{18}
2 ni 9 marotabaga ko'paytirish.
z=\frac{36}{18}
z=\frac{17±19}{18} tenglamasini yeching, bunda ± musbat. 17 ni 19 ga qo'shish.
z=2
36 ni 18 ga bo'lish.
z=-\frac{2}{18}
z=\frac{17±19}{18} tenglamasini yeching, bunda ± manfiy. 17 dan 19 ni ayirish.
z=-\frac{1}{9}
\frac{-2}{18} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
9z^{2}-17z-2=9\left(z-2\right)\left(z-\left(-\frac{1}{9}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 2 ga va x_{2} uchun -\frac{1}{9} ga bo‘ling.
9z^{2}-17z-2=9\left(z-2\right)\left(z+\frac{1}{9}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
9z^{2}-17z-2=9\left(z-2\right)\times \frac{9z+1}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{9} ni z ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
9z^{2}-17z-2=\left(z-2\right)\left(9z+1\right)
9 va 9 ichida eng katta umumiy 9 faktorini bekor qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}