Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9z^{2}+95z+10=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
z=\frac{-95±\sqrt{95^{2}-4\times 9\times 10}}{2\times 9}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
z=\frac{-95±\sqrt{9025-4\times 9\times 10}}{2\times 9}
95 kvadratini chiqarish.
z=\frac{-95±\sqrt{9025-36\times 10}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
z=\frac{-95±\sqrt{9025-360}}{2\times 9}
-36 ni 10 marotabaga ko'paytirish.
z=\frac{-95±\sqrt{8665}}{2\times 9}
9025 ni -360 ga qo'shish.
z=\frac{-95±\sqrt{8665}}{18}
2 ni 9 marotabaga ko'paytirish.
z=\frac{\sqrt{8665}-95}{18}
z=\frac{-95±\sqrt{8665}}{18} tenglamasini yeching, bunda ± musbat. -95 ni \sqrt{8665} ga qo'shish.
z=\frac{-\sqrt{8665}-95}{18}
z=\frac{-95±\sqrt{8665}}{18} tenglamasini yeching, bunda ± manfiy. -95 dan \sqrt{8665} ni ayirish.
9z^{2}+95z+10=9\left(z-\frac{\sqrt{8665}-95}{18}\right)\left(z-\frac{-\sqrt{8665}-95}{18}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-95+\sqrt{8665}}{18} ga va x_{2} uchun \frac{-95-\sqrt{8665}}{18} ga bo‘ling.