Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9y^{2}-12y+2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 9\times 2}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, -12 ni b va 2 ni c bilan almashtiring.
y=\frac{-\left(-12\right)±\sqrt{144-4\times 9\times 2}}{2\times 9}
-12 kvadratini chiqarish.
y=\frac{-\left(-12\right)±\sqrt{144-36\times 2}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
y=\frac{-\left(-12\right)±\sqrt{144-72}}{2\times 9}
-36 ni 2 marotabaga ko'paytirish.
y=\frac{-\left(-12\right)±\sqrt{72}}{2\times 9}
144 ni -72 ga qo'shish.
y=\frac{-\left(-12\right)±6\sqrt{2}}{2\times 9}
72 ning kvadrat ildizini chiqarish.
y=\frac{12±6\sqrt{2}}{2\times 9}
-12 ning teskarisi 12 ga teng.
y=\frac{12±6\sqrt{2}}{18}
2 ni 9 marotabaga ko'paytirish.
y=\frac{6\sqrt{2}+12}{18}
y=\frac{12±6\sqrt{2}}{18} tenglamasini yeching, bunda ± musbat. 12 ni 6\sqrt{2} ga qo'shish.
y=\frac{\sqrt{2}+2}{3}
12+6\sqrt{2} ni 18 ga bo'lish.
y=\frac{12-6\sqrt{2}}{18}
y=\frac{12±6\sqrt{2}}{18} tenglamasini yeching, bunda ± manfiy. 12 dan 6\sqrt{2} ni ayirish.
y=\frac{2-\sqrt{2}}{3}
12-6\sqrt{2} ni 18 ga bo'lish.
y=\frac{\sqrt{2}+2}{3} y=\frac{2-\sqrt{2}}{3}
Tenglama yechildi.
9y^{2}-12y+2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
9y^{2}-12y+2-2=-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
9y^{2}-12y=-2
O‘zidan 2 ayirilsa 0 qoladi.
\frac{9y^{2}-12y}{9}=-\frac{2}{9}
Ikki tarafini 9 ga bo‘ling.
y^{2}+\left(-\frac{12}{9}\right)y=-\frac{2}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
y^{2}-\frac{4}{3}y=-\frac{2}{9}
\frac{-12}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
y^{2}-\frac{4}{3}y+\left(-\frac{2}{3}\right)^{2}=-\frac{2}{9}+\left(-\frac{2}{3}\right)^{2}
-\frac{4}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{2}{3} olish uchun. Keyin, -\frac{2}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-\frac{4}{3}y+\frac{4}{9}=\frac{-2+4}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{2}{3} kvadratini chiqarish.
y^{2}-\frac{4}{3}y+\frac{4}{9}=\frac{2}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{2}{9} ni \frac{4}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(y-\frac{2}{3}\right)^{2}=\frac{2}{9}
y^{2}-\frac{4}{3}y+\frac{4}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-\frac{2}{3}\right)^{2}}=\sqrt{\frac{2}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-\frac{2}{3}=\frac{\sqrt{2}}{3} y-\frac{2}{3}=-\frac{\sqrt{2}}{3}
Qisqartirish.
y=\frac{\sqrt{2}+2}{3} y=\frac{2-\sqrt{2}}{3}
\frac{2}{3} ni tenglamaning ikkala tarafiga qo'shish.