Omil
\left(y-12\right)\left(9y+4\right)
Baholash
\left(y-12\right)\left(9y+4\right)
Grafik
Baham ko'rish
Klipbordga nusxa olish
a+b=-104 ab=9\left(-48\right)=-432
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 9y^{2}+ay+by-48 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-432 2,-216 3,-144 4,-108 6,-72 8,-54 9,-48 12,-36 16,-27 18,-24
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -432-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-432=-431 2-216=-214 3-144=-141 4-108=-104 6-72=-66 8-54=-46 9-48=-39 12-36=-24 16-27=-11 18-24=-6
Har bir juftlik yigʻindisini hisoblang.
a=-108 b=4
Yechim – -104 yigʻindisini beruvchi juftlik.
\left(9y^{2}-108y\right)+\left(4y-48\right)
9y^{2}-104y-48 ni \left(9y^{2}-108y\right)+\left(4y-48\right) sifatida qaytadan yozish.
9y\left(y-12\right)+4\left(y-12\right)
Birinchi guruhda 9y ni va ikkinchi guruhda 4 ni faktordan chiqaring.
\left(y-12\right)\left(9y+4\right)
Distributiv funktsiyasidan foydalangan holda y-12 umumiy terminini chiqaring.
9y^{2}-104y-48=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
y=\frac{-\left(-104\right)±\sqrt{\left(-104\right)^{2}-4\times 9\left(-48\right)}}{2\times 9}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-\left(-104\right)±\sqrt{10816-4\times 9\left(-48\right)}}{2\times 9}
-104 kvadratini chiqarish.
y=\frac{-\left(-104\right)±\sqrt{10816-36\left(-48\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
y=\frac{-\left(-104\right)±\sqrt{10816+1728}}{2\times 9}
-36 ni -48 marotabaga ko'paytirish.
y=\frac{-\left(-104\right)±\sqrt{12544}}{2\times 9}
10816 ni 1728 ga qo'shish.
y=\frac{-\left(-104\right)±112}{2\times 9}
12544 ning kvadrat ildizini chiqarish.
y=\frac{104±112}{2\times 9}
-104 ning teskarisi 104 ga teng.
y=\frac{104±112}{18}
2 ni 9 marotabaga ko'paytirish.
y=\frac{216}{18}
y=\frac{104±112}{18} tenglamasini yeching, bunda ± musbat. 104 ni 112 ga qo'shish.
y=12
216 ni 18 ga bo'lish.
y=-\frac{8}{18}
y=\frac{104±112}{18} tenglamasini yeching, bunda ± manfiy. 104 dan 112 ni ayirish.
y=-\frac{4}{9}
\frac{-8}{18} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
9y^{2}-104y-48=9\left(y-12\right)\left(y-\left(-\frac{4}{9}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 12 ga va x_{2} uchun -\frac{4}{9} ga bo‘ling.
9y^{2}-104y-48=9\left(y-12\right)\left(y+\frac{4}{9}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
9y^{2}-104y-48=9\left(y-12\right)\times \frac{9y+4}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{4}{9} ni y ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
9y^{2}-104y-48=\left(y-12\right)\left(9y+4\right)
9 va 9 ichida eng katta umumiy 9 faktorini bekor qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}