x uchun yechish
x>\frac{1}{6}
Grafik
Baham ko'rish
Klipbordga nusxa olish
9x-1<\frac{3}{4}\times 16x+\frac{3}{4}\left(-2\right)
\frac{3}{4} ga 16x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
9x-1<\frac{3\times 16}{4}x+\frac{3}{4}\left(-2\right)
\frac{3}{4}\times 16 ni yagona kasrga aylantiring.
9x-1<\frac{48}{4}x+\frac{3}{4}\left(-2\right)
48 hosil qilish uchun 3 va 16 ni ko'paytirish.
9x-1<12x+\frac{3}{4}\left(-2\right)
12 ni olish uchun 48 ni 4 ga bo‘ling.
9x-1<12x+\frac{3\left(-2\right)}{4}
\frac{3}{4}\left(-2\right) ni yagona kasrga aylantiring.
9x-1<12x+\frac{-6}{4}
-6 hosil qilish uchun 3 va -2 ni ko'paytirish.
9x-1<12x-\frac{3}{2}
\frac{-6}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
9x-1-12x<-\frac{3}{2}
Ikkala tarafdan 12x ni ayirish.
-3x-1<-\frac{3}{2}
-3x ni olish uchun 9x va -12x ni birlashtirish.
-3x<-\frac{3}{2}+1
1 ni ikki tarafga qo’shing.
-3x<-\frac{3}{2}+\frac{2}{2}
1 ni \frac{2}{2} kasrga o‘giring.
-3x<\frac{-3+2}{2}
-\frac{3}{2} va \frac{2}{2} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
-3x<-\frac{1}{2}
-1 olish uchun -3 va 2'ni qo'shing.
x>\frac{-\frac{1}{2}}{-3}
Ikki tarafini -3 ga bo‘ling. -3 manfiy boʻlgani uchun tengsizlikning yo‘nalishi o‘zgaradi.
x>\frac{-1}{2\left(-3\right)}
\frac{-\frac{1}{2}}{-3} ni yagona kasrga aylantiring.
x>\frac{-1}{-6}
-6 hosil qilish uchun 2 va -3 ni ko'paytirish.
x>\frac{1}{6}
Ikkala surat va maxrajdan manfiy belgini olib tashlash bilan \frac{-1}{-6} kasrini \frac{1}{6} ga soddalashtirish mumkin.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}