Omil
\left(x-11\right)\left(9x+4\right)
Baholash
\left(x-11\right)\left(9x+4\right)
Grafik
Baham ko'rish
Klipbordga nusxa olish
a+b=-95 ab=9\left(-44\right)=-396
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 9x^{2}+ax+bx-44 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-396 2,-198 3,-132 4,-99 6,-66 9,-44 11,-36 12,-33 18,-22
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -396-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-396=-395 2-198=-196 3-132=-129 4-99=-95 6-66=-60 9-44=-35 11-36=-25 12-33=-21 18-22=-4
Har bir juftlik yigʻindisini hisoblang.
a=-99 b=4
Yechim – -95 yigʻindisini beruvchi juftlik.
\left(9x^{2}-99x\right)+\left(4x-44\right)
9x^{2}-95x-44 ni \left(9x^{2}-99x\right)+\left(4x-44\right) sifatida qaytadan yozish.
9x\left(x-11\right)+4\left(x-11\right)
Birinchi guruhda 9x ni va ikkinchi guruhda 4 ni faktordan chiqaring.
\left(x-11\right)\left(9x+4\right)
Distributiv funktsiyasidan foydalangan holda x-11 umumiy terminini chiqaring.
9x^{2}-95x-44=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-95\right)±\sqrt{\left(-95\right)^{2}-4\times 9\left(-44\right)}}{2\times 9}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-95\right)±\sqrt{9025-4\times 9\left(-44\right)}}{2\times 9}
-95 kvadratini chiqarish.
x=\frac{-\left(-95\right)±\sqrt{9025-36\left(-44\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-95\right)±\sqrt{9025+1584}}{2\times 9}
-36 ni -44 marotabaga ko'paytirish.
x=\frac{-\left(-95\right)±\sqrt{10609}}{2\times 9}
9025 ni 1584 ga qo'shish.
x=\frac{-\left(-95\right)±103}{2\times 9}
10609 ning kvadrat ildizini chiqarish.
x=\frac{95±103}{2\times 9}
-95 ning teskarisi 95 ga teng.
x=\frac{95±103}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{198}{18}
x=\frac{95±103}{18} tenglamasini yeching, bunda ± musbat. 95 ni 103 ga qo'shish.
x=11
198 ni 18 ga bo'lish.
x=-\frac{8}{18}
x=\frac{95±103}{18} tenglamasini yeching, bunda ± manfiy. 95 dan 103 ni ayirish.
x=-\frac{4}{9}
\frac{-8}{18} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
9x^{2}-95x-44=9\left(x-11\right)\left(x-\left(-\frac{4}{9}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 11 ga va x_{2} uchun -\frac{4}{9} ga bo‘ling.
9x^{2}-95x-44=9\left(x-11\right)\left(x+\frac{4}{9}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
9x^{2}-95x-44=9\left(x-11\right)\times \frac{9x+4}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{4}{9} ni x ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
9x^{2}-95x-44=\left(x-11\right)\left(9x+4\right)
9 va 9 ichida eng katta umumiy 9 faktorini bekor qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}