Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9x^{2}-48x+68=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\times 9\times 68}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, -48 ni b va 68 ni c bilan almashtiring.
x=\frac{-\left(-48\right)±\sqrt{2304-4\times 9\times 68}}{2\times 9}
-48 kvadratini chiqarish.
x=\frac{-\left(-48\right)±\sqrt{2304-36\times 68}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-48\right)±\sqrt{2304-2448}}{2\times 9}
-36 ni 68 marotabaga ko'paytirish.
x=\frac{-\left(-48\right)±\sqrt{-144}}{2\times 9}
2304 ni -2448 ga qo'shish.
x=\frac{-\left(-48\right)±12i}{2\times 9}
-144 ning kvadrat ildizini chiqarish.
x=\frac{48±12i}{2\times 9}
-48 ning teskarisi 48 ga teng.
x=\frac{48±12i}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{48+12i}{18}
x=\frac{48±12i}{18} tenglamasini yeching, bunda ± musbat. 48 ni 12i ga qo'shish.
x=\frac{8}{3}+\frac{2}{3}i
48+12i ni 18 ga bo'lish.
x=\frac{48-12i}{18}
x=\frac{48±12i}{18} tenglamasini yeching, bunda ± manfiy. 48 dan 12i ni ayirish.
x=\frac{8}{3}-\frac{2}{3}i
48-12i ni 18 ga bo'lish.
x=\frac{8}{3}+\frac{2}{3}i x=\frac{8}{3}-\frac{2}{3}i
Tenglama yechildi.
9x^{2}-48x+68=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
9x^{2}-48x+68-68=-68
Tenglamaning ikkala tarafidan 68 ni ayirish.
9x^{2}-48x=-68
O‘zidan 68 ayirilsa 0 qoladi.
\frac{9x^{2}-48x}{9}=-\frac{68}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}+\left(-\frac{48}{9}\right)x=-\frac{68}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{16}{3}x=-\frac{68}{9}
\frac{-48}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{16}{3}x+\left(-\frac{8}{3}\right)^{2}=-\frac{68}{9}+\left(-\frac{8}{3}\right)^{2}
-\frac{16}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{8}{3} olish uchun. Keyin, -\frac{8}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{16}{3}x+\frac{64}{9}=\frac{-68+64}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{8}{3} kvadratini chiqarish.
x^{2}-\frac{16}{3}x+\frac{64}{9}=-\frac{4}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{68}{9} ni \frac{64}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{8}{3}\right)^{2}=-\frac{4}{9}
x^{2}-\frac{16}{3}x+\frac{64}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{8}{3}\right)^{2}}=\sqrt{-\frac{4}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{8}{3}=\frac{2}{3}i x-\frac{8}{3}=-\frac{2}{3}i
Qisqartirish.
x=\frac{8}{3}+\frac{2}{3}i x=\frac{8}{3}-\frac{2}{3}i
\frac{8}{3} ni tenglamaning ikkala tarafiga qo'shish.