x uchun yechish
x=\frac{\sqrt{22}+2}{9}\approx 0,743379529
x=\frac{2-\sqrt{22}}{9}\approx -0,298935084
Grafik
Baham ko'rish
Klipbordga nusxa olish
9x^{2}-4x-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 9\left(-2\right)}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, -4 ni b va -2 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 9\left(-2\right)}}{2\times 9}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16-36\left(-2\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{16+72}}{2\times 9}
-36 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{88}}{2\times 9}
16 ni 72 ga qo'shish.
x=\frac{-\left(-4\right)±2\sqrt{22}}{2\times 9}
88 ning kvadrat ildizini chiqarish.
x=\frac{4±2\sqrt{22}}{2\times 9}
-4 ning teskarisi 4 ga teng.
x=\frac{4±2\sqrt{22}}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{2\sqrt{22}+4}{18}
x=\frac{4±2\sqrt{22}}{18} tenglamasini yeching, bunda ± musbat. 4 ni 2\sqrt{22} ga qo'shish.
x=\frac{\sqrt{22}+2}{9}
4+2\sqrt{22} ni 18 ga bo'lish.
x=\frac{4-2\sqrt{22}}{18}
x=\frac{4±2\sqrt{22}}{18} tenglamasini yeching, bunda ± manfiy. 4 dan 2\sqrt{22} ni ayirish.
x=\frac{2-\sqrt{22}}{9}
4-2\sqrt{22} ni 18 ga bo'lish.
x=\frac{\sqrt{22}+2}{9} x=\frac{2-\sqrt{22}}{9}
Tenglama yechildi.
9x^{2}-4x-2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
9x^{2}-4x-2-\left(-2\right)=-\left(-2\right)
2 ni tenglamaning ikkala tarafiga qo'shish.
9x^{2}-4x=-\left(-2\right)
O‘zidan -2 ayirilsa 0 qoladi.
9x^{2}-4x=2
0 dan -2 ni ayirish.
\frac{9x^{2}-4x}{9}=\frac{2}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}-\frac{4}{9}x=\frac{2}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{4}{9}x+\left(-\frac{2}{9}\right)^{2}=\frac{2}{9}+\left(-\frac{2}{9}\right)^{2}
-\frac{4}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{2}{9} olish uchun. Keyin, -\frac{2}{9} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{4}{9}x+\frac{4}{81}=\frac{2}{9}+\frac{4}{81}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{2}{9} kvadratini chiqarish.
x^{2}-\frac{4}{9}x+\frac{4}{81}=\frac{22}{81}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{2}{9} ni \frac{4}{81} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{2}{9}\right)^{2}=\frac{22}{81}
x^{2}-\frac{4}{9}x+\frac{4}{81} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{2}{9}\right)^{2}}=\sqrt{\frac{22}{81}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{2}{9}=\frac{\sqrt{22}}{9} x-\frac{2}{9}=-\frac{\sqrt{22}}{9}
Qisqartirish.
x=\frac{\sqrt{22}+2}{9} x=\frac{2-\sqrt{22}}{9}
\frac{2}{9} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}