x uchun yechish
x=\frac{\sqrt{11}}{3}+1\approx 2,105541597
x=-\frac{\sqrt{11}}{3}+1\approx -0,105541597
Grafik
Baham ko'rish
Klipbordga nusxa olish
9x^{2}-2-18x=0
Ikkala tarafdan 18x ni ayirish.
9x^{2}-18x-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 9\left(-2\right)}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, -18 ni b va -2 ni c bilan almashtiring.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 9\left(-2\right)}}{2\times 9}
-18 kvadratini chiqarish.
x=\frac{-\left(-18\right)±\sqrt{324-36\left(-2\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{324+72}}{2\times 9}
-36 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{396}}{2\times 9}
324 ni 72 ga qo'shish.
x=\frac{-\left(-18\right)±6\sqrt{11}}{2\times 9}
396 ning kvadrat ildizini chiqarish.
x=\frac{18±6\sqrt{11}}{2\times 9}
-18 ning teskarisi 18 ga teng.
x=\frac{18±6\sqrt{11}}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{6\sqrt{11}+18}{18}
x=\frac{18±6\sqrt{11}}{18} tenglamasini yeching, bunda ± musbat. 18 ni 6\sqrt{11} ga qo'shish.
x=\frac{\sqrt{11}}{3}+1
18+6\sqrt{11} ni 18 ga bo'lish.
x=\frac{18-6\sqrt{11}}{18}
x=\frac{18±6\sqrt{11}}{18} tenglamasini yeching, bunda ± manfiy. 18 dan 6\sqrt{11} ni ayirish.
x=-\frac{\sqrt{11}}{3}+1
18-6\sqrt{11} ni 18 ga bo'lish.
x=\frac{\sqrt{11}}{3}+1 x=-\frac{\sqrt{11}}{3}+1
Tenglama yechildi.
9x^{2}-2-18x=0
Ikkala tarafdan 18x ni ayirish.
9x^{2}-18x=2
2 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{9x^{2}-18x}{9}=\frac{2}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}+\left(-\frac{18}{9}\right)x=\frac{2}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}-2x=\frac{2}{9}
-18 ni 9 ga bo'lish.
x^{2}-2x+1=\frac{2}{9}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=\frac{11}{9}
\frac{2}{9} ni 1 ga qo'shish.
\left(x-1\right)^{2}=\frac{11}{9}
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{11}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\frac{\sqrt{11}}{3} x-1=-\frac{\sqrt{11}}{3}
Qisqartirish.
x=\frac{\sqrt{11}}{3}+1 x=-\frac{\sqrt{11}}{3}+1
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}