x uchun yechish
x=-\frac{8}{9}\approx -0,888888889
x=3
Grafik
Baham ko'rish
Klipbordga nusxa olish
a+b=-19 ab=9\left(-24\right)=-216
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 9x^{2}+ax+bx-24 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-216 2,-108 3,-72 4,-54 6,-36 8,-27 9,-24 12,-18
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -216-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-216=-215 2-108=-106 3-72=-69 4-54=-50 6-36=-30 8-27=-19 9-24=-15 12-18=-6
Har bir juftlik yigʻindisini hisoblang.
a=-27 b=8
Yechim – -19 yigʻindisini beruvchi juftlik.
\left(9x^{2}-27x\right)+\left(8x-24\right)
9x^{2}-19x-24 ni \left(9x^{2}-27x\right)+\left(8x-24\right) sifatida qaytadan yozish.
9x\left(x-3\right)+8\left(x-3\right)
Birinchi guruhda 9x ni va ikkinchi guruhda 8 ni faktordan chiqaring.
\left(x-3\right)\left(9x+8\right)
Distributiv funktsiyasidan foydalangan holda x-3 umumiy terminini chiqaring.
x=3 x=-\frac{8}{9}
Tenglamani yechish uchun x-3=0 va 9x+8=0 ni yeching.
9x^{2}-19x-24=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 9\left(-24\right)}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, -19 ni b va -24 ni c bilan almashtiring.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 9\left(-24\right)}}{2\times 9}
-19 kvadratini chiqarish.
x=\frac{-\left(-19\right)±\sqrt{361-36\left(-24\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-19\right)±\sqrt{361+864}}{2\times 9}
-36 ni -24 marotabaga ko'paytirish.
x=\frac{-\left(-19\right)±\sqrt{1225}}{2\times 9}
361 ni 864 ga qo'shish.
x=\frac{-\left(-19\right)±35}{2\times 9}
1225 ning kvadrat ildizini chiqarish.
x=\frac{19±35}{2\times 9}
-19 ning teskarisi 19 ga teng.
x=\frac{19±35}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{54}{18}
x=\frac{19±35}{18} tenglamasini yeching, bunda ± musbat. 19 ni 35 ga qo'shish.
x=3
54 ni 18 ga bo'lish.
x=-\frac{16}{18}
x=\frac{19±35}{18} tenglamasini yeching, bunda ± manfiy. 19 dan 35 ni ayirish.
x=-\frac{8}{9}
\frac{-16}{18} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=3 x=-\frac{8}{9}
Tenglama yechildi.
9x^{2}-19x-24=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
9x^{2}-19x-24-\left(-24\right)=-\left(-24\right)
24 ni tenglamaning ikkala tarafiga qo'shish.
9x^{2}-19x=-\left(-24\right)
O‘zidan -24 ayirilsa 0 qoladi.
9x^{2}-19x=24
0 dan -24 ni ayirish.
\frac{9x^{2}-19x}{9}=\frac{24}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}-\frac{19}{9}x=\frac{24}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{19}{9}x=\frac{8}{3}
\frac{24}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{19}{9}x+\left(-\frac{19}{18}\right)^{2}=\frac{8}{3}+\left(-\frac{19}{18}\right)^{2}
-\frac{19}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{19}{18} olish uchun. Keyin, -\frac{19}{18} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{19}{9}x+\frac{361}{324}=\frac{8}{3}+\frac{361}{324}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{19}{18} kvadratini chiqarish.
x^{2}-\frac{19}{9}x+\frac{361}{324}=\frac{1225}{324}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{8}{3} ni \frac{361}{324} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{19}{18}\right)^{2}=\frac{1225}{324}
x^{2}-\frac{19}{9}x+\frac{361}{324} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{19}{18}\right)^{2}}=\sqrt{\frac{1225}{324}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{19}{18}=\frac{35}{18} x-\frac{19}{18}=-\frac{35}{18}
Qisqartirish.
x=3 x=-\frac{8}{9}
\frac{19}{18} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}