x uchun yechish
x = \frac{5 \sqrt{7} + 7}{9} \approx 2,247639617
x=\frac{7-5\sqrt{7}}{9}\approx -0,692084062
Grafik
Baham ko'rish
Klipbordga nusxa olish
9x^{2}-14x-14=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 9\left(-14\right)}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, -14 ni b va -14 ni c bilan almashtiring.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 9\left(-14\right)}}{2\times 9}
-14 kvadratini chiqarish.
x=\frac{-\left(-14\right)±\sqrt{196-36\left(-14\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{196+504}}{2\times 9}
-36 ni -14 marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{700}}{2\times 9}
196 ni 504 ga qo'shish.
x=\frac{-\left(-14\right)±10\sqrt{7}}{2\times 9}
700 ning kvadrat ildizini chiqarish.
x=\frac{14±10\sqrt{7}}{2\times 9}
-14 ning teskarisi 14 ga teng.
x=\frac{14±10\sqrt{7}}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{10\sqrt{7}+14}{18}
x=\frac{14±10\sqrt{7}}{18} tenglamasini yeching, bunda ± musbat. 14 ni 10\sqrt{7} ga qo'shish.
x=\frac{5\sqrt{7}+7}{9}
14+10\sqrt{7} ni 18 ga bo'lish.
x=\frac{14-10\sqrt{7}}{18}
x=\frac{14±10\sqrt{7}}{18} tenglamasini yeching, bunda ± manfiy. 14 dan 10\sqrt{7} ni ayirish.
x=\frac{7-5\sqrt{7}}{9}
14-10\sqrt{7} ni 18 ga bo'lish.
x=\frac{5\sqrt{7}+7}{9} x=\frac{7-5\sqrt{7}}{9}
Tenglama yechildi.
9x^{2}-14x-14=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
9x^{2}-14x-14-\left(-14\right)=-\left(-14\right)
14 ni tenglamaning ikkala tarafiga qo'shish.
9x^{2}-14x=-\left(-14\right)
O‘zidan -14 ayirilsa 0 qoladi.
9x^{2}-14x=14
0 dan -14 ni ayirish.
\frac{9x^{2}-14x}{9}=\frac{14}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}-\frac{14}{9}x=\frac{14}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{14}{9}x+\left(-\frac{7}{9}\right)^{2}=\frac{14}{9}+\left(-\frac{7}{9}\right)^{2}
-\frac{14}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{9} olish uchun. Keyin, -\frac{7}{9} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{14}{9}x+\frac{49}{81}=\frac{14}{9}+\frac{49}{81}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{9} kvadratini chiqarish.
x^{2}-\frac{14}{9}x+\frac{49}{81}=\frac{175}{81}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{14}{9} ni \frac{49}{81} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{7}{9}\right)^{2}=\frac{175}{81}
x^{2}-\frac{14}{9}x+\frac{49}{81} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{9}\right)^{2}}=\sqrt{\frac{175}{81}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{9}=\frac{5\sqrt{7}}{9} x-\frac{7}{9}=-\frac{5\sqrt{7}}{9}
Qisqartirish.
x=\frac{5\sqrt{7}+7}{9} x=\frac{7-5\sqrt{7}}{9}
\frac{7}{9} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}