Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9x^{2}-12x-4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 9\left(-4\right)}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, -12 ni b va -4 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 9\left(-4\right)}}{2\times 9}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144-36\left(-4\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{144+144}}{2\times 9}
-36 ni -4 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{288}}{2\times 9}
144 ni 144 ga qo'shish.
x=\frac{-\left(-12\right)±12\sqrt{2}}{2\times 9}
288 ning kvadrat ildizini chiqarish.
x=\frac{12±12\sqrt{2}}{2\times 9}
-12 ning teskarisi 12 ga teng.
x=\frac{12±12\sqrt{2}}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{12\sqrt{2}+12}{18}
x=\frac{12±12\sqrt{2}}{18} tenglamasini yeching, bunda ± musbat. 12 ni 12\sqrt{2} ga qo'shish.
x=\frac{2\sqrt{2}+2}{3}
12+12\sqrt{2} ni 18 ga bo'lish.
x=\frac{12-12\sqrt{2}}{18}
x=\frac{12±12\sqrt{2}}{18} tenglamasini yeching, bunda ± manfiy. 12 dan 12\sqrt{2} ni ayirish.
x=\frac{2-2\sqrt{2}}{3}
12-12\sqrt{2} ni 18 ga bo'lish.
x=\frac{2\sqrt{2}+2}{3} x=\frac{2-2\sqrt{2}}{3}
Tenglama yechildi.
9x^{2}-12x-4=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
9x^{2}-12x-4-\left(-4\right)=-\left(-4\right)
4 ni tenglamaning ikkala tarafiga qo'shish.
9x^{2}-12x=-\left(-4\right)
O‘zidan -4 ayirilsa 0 qoladi.
9x^{2}-12x=4
0 dan -4 ni ayirish.
\frac{9x^{2}-12x}{9}=\frac{4}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}+\left(-\frac{12}{9}\right)x=\frac{4}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{4}{3}x=\frac{4}{9}
\frac{-12}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\frac{4}{9}+\left(-\frac{2}{3}\right)^{2}
-\frac{4}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{2}{3} olish uchun. Keyin, -\frac{2}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{4+4}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{2}{3} kvadratini chiqarish.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{8}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{4}{9} ni \frac{4}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{2}{3}\right)^{2}=\frac{8}{9}
x^{2}-\frac{4}{3}x+\frac{4}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{8}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{2}{3}=\frac{2\sqrt{2}}{3} x-\frac{2}{3}=-\frac{2\sqrt{2}}{3}
Qisqartirish.
x=\frac{2\sqrt{2}+2}{3} x=\frac{2-2\sqrt{2}}{3}
\frac{2}{3} ni tenglamaning ikkala tarafiga qo'shish.