Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9x^{2}+9x-72=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-9±\sqrt{9^{2}-4\times 9\left(-72\right)}}{2\times 9}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-9±\sqrt{81-4\times 9\left(-72\right)}}{2\times 9}
9 kvadratini chiqarish.
x=\frac{-9±\sqrt{81-36\left(-72\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{81+2592}}{2\times 9}
-36 ni -72 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{2673}}{2\times 9}
81 ni 2592 ga qo'shish.
x=\frac{-9±9\sqrt{33}}{2\times 9}
2673 ning kvadrat ildizini chiqarish.
x=\frac{-9±9\sqrt{33}}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{9\sqrt{33}-9}{18}
x=\frac{-9±9\sqrt{33}}{18} tenglamasini yeching, bunda ± musbat. -9 ni 9\sqrt{33} ga qo'shish.
x=\frac{\sqrt{33}-1}{2}
-9+9\sqrt{33} ni 18 ga bo'lish.
x=\frac{-9\sqrt{33}-9}{18}
x=\frac{-9±9\sqrt{33}}{18} tenglamasini yeching, bunda ± manfiy. -9 dan 9\sqrt{33} ni ayirish.
x=\frac{-\sqrt{33}-1}{2}
-9-9\sqrt{33} ni 18 ga bo'lish.
9x^{2}+9x-72=9\left(x-\frac{\sqrt{33}-1}{2}\right)\left(x-\frac{-\sqrt{33}-1}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-1+\sqrt{33}}{2} ga va x_{2} uchun \frac{-1-\sqrt{33}}{2} ga bo‘ling.