Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9x^{2}+9x=1
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
9x^{2}+9x-1=1-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
9x^{2}+9x-1=0
O‘zidan 1 ayirilsa 0 qoladi.
x=\frac{-9±\sqrt{9^{2}-4\times 9\left(-1\right)}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, 9 ni b va -1 ni c bilan almashtiring.
x=\frac{-9±\sqrt{81-4\times 9\left(-1\right)}}{2\times 9}
9 kvadratini chiqarish.
x=\frac{-9±\sqrt{81-36\left(-1\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{81+36}}{2\times 9}
-36 ni -1 marotabaga ko'paytirish.
x=\frac{-9±\sqrt{117}}{2\times 9}
81 ni 36 ga qo'shish.
x=\frac{-9±3\sqrt{13}}{2\times 9}
117 ning kvadrat ildizini chiqarish.
x=\frac{-9±3\sqrt{13}}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{3\sqrt{13}-9}{18}
x=\frac{-9±3\sqrt{13}}{18} tenglamasini yeching, bunda ± musbat. -9 ni 3\sqrt{13} ga qo'shish.
x=\frac{\sqrt{13}}{6}-\frac{1}{2}
-9+3\sqrt{13} ni 18 ga bo'lish.
x=\frac{-3\sqrt{13}-9}{18}
x=\frac{-9±3\sqrt{13}}{18} tenglamasini yeching, bunda ± manfiy. -9 dan 3\sqrt{13} ni ayirish.
x=-\frac{\sqrt{13}}{6}-\frac{1}{2}
-9-3\sqrt{13} ni 18 ga bo'lish.
x=\frac{\sqrt{13}}{6}-\frac{1}{2} x=-\frac{\sqrt{13}}{6}-\frac{1}{2}
Tenglama yechildi.
9x^{2}+9x=1
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{9x^{2}+9x}{9}=\frac{1}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}+\frac{9}{9}x=\frac{1}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}+x=\frac{1}{9}
9 ni 9 ga bo'lish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{1}{9}+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=\frac{1}{9}+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=\frac{13}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{9} ni \frac{1}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{2}\right)^{2}=\frac{13}{36}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{13}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{\sqrt{13}}{6} x+\frac{1}{2}=-\frac{\sqrt{13}}{6}
Qisqartirish.
x=\frac{\sqrt{13}}{6}-\frac{1}{2} x=-\frac{\sqrt{13}}{6}-\frac{1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.