Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9x^{2}+7x+1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-7±\sqrt{7^{2}-4\times 9}}{2\times 9}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-7±\sqrt{49-4\times 9}}{2\times 9}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49-36}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{13}}{2\times 9}
49 ni -36 ga qo'shish.
x=\frac{-7±\sqrt{13}}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{\sqrt{13}-7}{18}
x=\frac{-7±\sqrt{13}}{18} tenglamasini yeching, bunda ± musbat. -7 ni \sqrt{13} ga qo'shish.
x=\frac{-\sqrt{13}-7}{18}
x=\frac{-7±\sqrt{13}}{18} tenglamasini yeching, bunda ± manfiy. -7 dan \sqrt{13} ni ayirish.
9x^{2}+7x+1=9\left(x-\frac{\sqrt{13}-7}{18}\right)\left(x-\frac{-\sqrt{13}-7}{18}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-7+\sqrt{13}}{18} ga va x_{2} uchun \frac{-7-\sqrt{13}}{18} ga bo‘ling.