x uchun yechish (complex solution)
x=\frac{-1+\sqrt{35}i}{6}\approx -0,166666667+0,986013297i
x=\frac{-\sqrt{35}i-1}{6}\approx -0,166666667-0,986013297i
Grafik
Baham ko'rish
Klipbordga nusxa olish
9x^{2}+3x+9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3±\sqrt{3^{2}-4\times 9\times 9}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, 3 ni b va 9 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\times 9\times 9}}{2\times 9}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9-36\times 9}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9-324}}{2\times 9}
-36 ni 9 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{-315}}{2\times 9}
9 ni -324 ga qo'shish.
x=\frac{-3±3\sqrt{35}i}{2\times 9}
-315 ning kvadrat ildizini chiqarish.
x=\frac{-3±3\sqrt{35}i}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{-3+3\sqrt{35}i}{18}
x=\frac{-3±3\sqrt{35}i}{18} tenglamasini yeching, bunda ± musbat. -3 ni 3i\sqrt{35} ga qo'shish.
x=\frac{-1+\sqrt{35}i}{6}
-3+3i\sqrt{35} ni 18 ga bo'lish.
x=\frac{-3\sqrt{35}i-3}{18}
x=\frac{-3±3\sqrt{35}i}{18} tenglamasini yeching, bunda ± manfiy. -3 dan 3i\sqrt{35} ni ayirish.
x=\frac{-\sqrt{35}i-1}{6}
-3-3i\sqrt{35} ni 18 ga bo'lish.
x=\frac{-1+\sqrt{35}i}{6} x=\frac{-\sqrt{35}i-1}{6}
Tenglama yechildi.
9x^{2}+3x+9=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
9x^{2}+3x+9-9=-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
9x^{2}+3x=-9
O‘zidan 9 ayirilsa 0 qoladi.
\frac{9x^{2}+3x}{9}=-\frac{9}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}+\frac{3}{9}x=-\frac{9}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{3}x=-\frac{9}{9}
\frac{3}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{1}{3}x=-1
-9 ni 9 ga bo'lish.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=-1+\left(\frac{1}{6}\right)^{2}
\frac{1}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{6} olish uchun. Keyin, \frac{1}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-1+\frac{1}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{6} kvadratini chiqarish.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{35}{36}
-1 ni \frac{1}{36} ga qo'shish.
\left(x+\frac{1}{6}\right)^{2}=-\frac{35}{36}
x^{2}+\frac{1}{3}x+\frac{1}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{-\frac{35}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{6}=\frac{\sqrt{35}i}{6} x+\frac{1}{6}=-\frac{\sqrt{35}i}{6}
Qisqartirish.
x=\frac{-1+\sqrt{35}i}{6} x=\frac{-\sqrt{35}i-1}{6}
Tenglamaning ikkala tarafidan \frac{1}{6} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}