Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9x^{2}+18x+9=3
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
9x^{2}+18x+9-3=3-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
9x^{2}+18x+9-3=0
O‘zidan 3 ayirilsa 0 qoladi.
9x^{2}+18x+6=0
9 dan 3 ni ayirish.
x=\frac{-18±\sqrt{18^{2}-4\times 9\times 6}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, 18 ni b va 6 ni c bilan almashtiring.
x=\frac{-18±\sqrt{324-4\times 9\times 6}}{2\times 9}
18 kvadratini chiqarish.
x=\frac{-18±\sqrt{324-36\times 6}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-18±\sqrt{324-216}}{2\times 9}
-36 ni 6 marotabaga ko'paytirish.
x=\frac{-18±\sqrt{108}}{2\times 9}
324 ni -216 ga qo'shish.
x=\frac{-18±6\sqrt{3}}{2\times 9}
108 ning kvadrat ildizini chiqarish.
x=\frac{-18±6\sqrt{3}}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{6\sqrt{3}-18}{18}
x=\frac{-18±6\sqrt{3}}{18} tenglamasini yeching, bunda ± musbat. -18 ni 6\sqrt{3} ga qo'shish.
x=\frac{\sqrt{3}}{3}-1
-18+6\sqrt{3} ni 18 ga bo'lish.
x=\frac{-6\sqrt{3}-18}{18}
x=\frac{-18±6\sqrt{3}}{18} tenglamasini yeching, bunda ± manfiy. -18 dan 6\sqrt{3} ni ayirish.
x=-\frac{\sqrt{3}}{3}-1
-18-6\sqrt{3} ni 18 ga bo'lish.
x=\frac{\sqrt{3}}{3}-1 x=-\frac{\sqrt{3}}{3}-1
Tenglama yechildi.
9x^{2}+18x+9=3
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
9x^{2}+18x+9-9=3-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
9x^{2}+18x=3-9
O‘zidan 9 ayirilsa 0 qoladi.
9x^{2}+18x=-6
3 dan 9 ni ayirish.
\frac{9x^{2}+18x}{9}=-\frac{6}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}+\frac{18}{9}x=-\frac{6}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}+2x=-\frac{6}{9}
18 ni 9 ga bo'lish.
x^{2}+2x=-\frac{2}{3}
\frac{-6}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+2x+1^{2}=-\frac{2}{3}+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=-\frac{2}{3}+1
1 kvadratini chiqarish.
x^{2}+2x+1=\frac{1}{3}
-\frac{2}{3} ni 1 ga qo'shish.
\left(x+1\right)^{2}=\frac{1}{3}
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{1}{3}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\frac{\sqrt{3}}{3} x+1=-\frac{\sqrt{3}}{3}
Qisqartirish.
x=\frac{\sqrt{3}}{3}-1 x=-\frac{\sqrt{3}}{3}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.