x uchun yechish (complex solution)
x=\frac{-7+2\sqrt{35}i}{9}\approx -0,777777778+1,314684396i
x=\frac{-2\sqrt{35}i-7}{9}\approx -0,777777778-1,314684396i
Grafik
Baham ko'rish
Klipbordga nusxa olish
9x^{2}+14x+21=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-14±\sqrt{14^{2}-4\times 9\times 21}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, 14 ni b va 21 ni c bilan almashtiring.
x=\frac{-14±\sqrt{196-4\times 9\times 21}}{2\times 9}
14 kvadratini chiqarish.
x=\frac{-14±\sqrt{196-36\times 21}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-14±\sqrt{196-756}}{2\times 9}
-36 ni 21 marotabaga ko'paytirish.
x=\frac{-14±\sqrt{-560}}{2\times 9}
196 ni -756 ga qo'shish.
x=\frac{-14±4\sqrt{35}i}{2\times 9}
-560 ning kvadrat ildizini chiqarish.
x=\frac{-14±4\sqrt{35}i}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{-14+4\sqrt{35}i}{18}
x=\frac{-14±4\sqrt{35}i}{18} tenglamasini yeching, bunda ± musbat. -14 ni 4i\sqrt{35} ga qo'shish.
x=\frac{-7+2\sqrt{35}i}{9}
-14+4i\sqrt{35} ni 18 ga bo'lish.
x=\frac{-4\sqrt{35}i-14}{18}
x=\frac{-14±4\sqrt{35}i}{18} tenglamasini yeching, bunda ± manfiy. -14 dan 4i\sqrt{35} ni ayirish.
x=\frac{-2\sqrt{35}i-7}{9}
-14-4i\sqrt{35} ni 18 ga bo'lish.
x=\frac{-7+2\sqrt{35}i}{9} x=\frac{-2\sqrt{35}i-7}{9}
Tenglama yechildi.
9x^{2}+14x+21=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
9x^{2}+14x+21-21=-21
Tenglamaning ikkala tarafidan 21 ni ayirish.
9x^{2}+14x=-21
O‘zidan 21 ayirilsa 0 qoladi.
\frac{9x^{2}+14x}{9}=-\frac{21}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}+\frac{14}{9}x=-\frac{21}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{14}{9}x=-\frac{7}{3}
\frac{-21}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{14}{9}x+\left(\frac{7}{9}\right)^{2}=-\frac{7}{3}+\left(\frac{7}{9}\right)^{2}
\frac{14}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{9} olish uchun. Keyin, \frac{7}{9} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{14}{9}x+\frac{49}{81}=-\frac{7}{3}+\frac{49}{81}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{9} kvadratini chiqarish.
x^{2}+\frac{14}{9}x+\frac{49}{81}=-\frac{140}{81}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{7}{3} ni \frac{49}{81} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{7}{9}\right)^{2}=-\frac{140}{81}
x^{2}+\frac{14}{9}x+\frac{49}{81} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{9}\right)^{2}}=\sqrt{-\frac{140}{81}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{9}=\frac{2\sqrt{35}i}{9} x+\frac{7}{9}=-\frac{2\sqrt{35}i}{9}
Qisqartirish.
x=\frac{-7+2\sqrt{35}i}{9} x=\frac{-2\sqrt{35}i-7}{9}
Tenglamaning ikkala tarafidan \frac{7}{9} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}