p uchun yechish
p = \frac{7}{3} = 2\frac{1}{3} \approx 2,333333333
p = -\frac{7}{3} = -2\frac{1}{3} \approx -2,333333333
Baham ko'rish
Klipbordga nusxa olish
p^{2}=\frac{49}{9}
Ikki tarafini 9 ga bo‘ling.
p^{2}-\frac{49}{9}=0
Ikkala tarafdan \frac{49}{9} ni ayirish.
9p^{2}-49=0
Ikkala tarafini 9 ga ko‘paytiring.
\left(3p-7\right)\left(3p+7\right)=0
Hisoblang: 9p^{2}-49. 9p^{2}-49 ni \left(3p\right)^{2}-7^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
p=\frac{7}{3} p=-\frac{7}{3}
Tenglamani yechish uchun 3p-7=0 va 3p+7=0 ni yeching.
p^{2}=\frac{49}{9}
Ikki tarafini 9 ga bo‘ling.
p=\frac{7}{3} p=-\frac{7}{3}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
p^{2}=\frac{49}{9}
Ikki tarafini 9 ga bo‘ling.
p^{2}-\frac{49}{9}=0
Ikkala tarafdan \frac{49}{9} ni ayirish.
p=\frac{0±\sqrt{0^{2}-4\left(-\frac{49}{9}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{49}{9} ni c bilan almashtiring.
p=\frac{0±\sqrt{-4\left(-\frac{49}{9}\right)}}{2}
0 kvadratini chiqarish.
p=\frac{0±\sqrt{\frac{196}{9}}}{2}
-4 ni -\frac{49}{9} marotabaga ko'paytirish.
p=\frac{0±\frac{14}{3}}{2}
\frac{196}{9} ning kvadrat ildizini chiqarish.
p=\frac{7}{3}
p=\frac{0±\frac{14}{3}}{2} tenglamasini yeching, bunda ± musbat.
p=-\frac{7}{3}
p=\frac{0±\frac{14}{3}}{2} tenglamasini yeching, bunda ± manfiy.
p=\frac{7}{3} p=-\frac{7}{3}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}