Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

n\left(9n+21\right)=0
n omili.
n=0 n=-\frac{7}{3}
Tenglamani yechish uchun n=0 va 9n+21=0 ni yeching.
9n^{2}+21n=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-21±\sqrt{21^{2}}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, 21 ni b va 0 ni c bilan almashtiring.
n=\frac{-21±21}{2\times 9}
21^{2} ning kvadrat ildizini chiqarish.
n=\frac{-21±21}{18}
2 ni 9 marotabaga ko'paytirish.
n=\frac{0}{18}
n=\frac{-21±21}{18} tenglamasini yeching, bunda ± musbat. -21 ni 21 ga qo'shish.
n=0
0 ni 18 ga bo'lish.
n=-\frac{42}{18}
n=\frac{-21±21}{18} tenglamasini yeching, bunda ± manfiy. -21 dan 21 ni ayirish.
n=-\frac{7}{3}
\frac{-42}{18} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
n=0 n=-\frac{7}{3}
Tenglama yechildi.
9n^{2}+21n=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{9n^{2}+21n}{9}=\frac{0}{9}
Ikki tarafini 9 ga bo‘ling.
n^{2}+\frac{21}{9}n=\frac{0}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
n^{2}+\frac{7}{3}n=\frac{0}{9}
\frac{21}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
n^{2}+\frac{7}{3}n=0
0 ni 9 ga bo'lish.
n^{2}+\frac{7}{3}n+\left(\frac{7}{6}\right)^{2}=\left(\frac{7}{6}\right)^{2}
\frac{7}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{6} olish uchun. Keyin, \frac{7}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}+\frac{7}{3}n+\frac{49}{36}=\frac{49}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{6} kvadratini chiqarish.
\left(n+\frac{7}{6}\right)^{2}=\frac{49}{36}
n^{2}+\frac{7}{3}n+\frac{49}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n+\frac{7}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n+\frac{7}{6}=\frac{7}{6} n+\frac{7}{6}=-\frac{7}{6}
Qisqartirish.
n=0 n=-\frac{7}{3}
Tenglamaning ikkala tarafidan \frac{7}{6} ni ayirish.